【題目】在一次“構(gòu)造勾股數(shù)”的探究性學(xué)習(xí)中,老師給出了下表:
其中m、n為正整數(shù),且m>n.
(1)觀察表格,當(dāng)m=2,n=1時(shí),此時(shí)對(duì)應(yīng)的a、b、c的值能否為直角三角形三邊的長?說明你的理由.
(2)探究a,b,c與m、n之間的關(guān)系并用含m、n的代數(shù)式表示:a=___,b=___,c=___.
(3)以a,b,c為邊長的三角形是否一定為直角三角形?如果是,請(qǐng)說明理由;如果不是,請(qǐng)舉出反例.
【答案】(1)能,理由見解析;(2)m2+n2,2mn,m2-n2;(3)一定,理由見解析.
【解析】
(1)計(jì)算出a、b、c的值,根據(jù)勾股定理的逆定理即可判斷;
(2)根據(jù)給出的數(shù)據(jù)總結(jié)即可;
(3)分別計(jì)算出a2、b2、c2,根據(jù)勾股定理的逆定理進(jìn)行判斷.
解:(1)當(dāng)m=2,n=1時(shí),a=5、b=4、c=3,
∵32+42=52,
∴a、b、c的值能為直角三角形三邊的長;
(2)觀察得,a=m2+n2,b=2mn,c=m2-n2;
(3)以a,b,c為邊長的三角形一定為直角三角形,
∵a2=(m2+n2)2=m4+2m2n2+n4,
b2+c2=m4-2m2n2+n4+4m2n2=m4+2m2n2+n4,
∴a2=b2+c2,
∴以a,b,c為邊長的三角形一定為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)對(duì)個(gè)旅游景點(diǎn)的游客人數(shù)進(jìn)行了統(tǒng)計(jì),有關(guān)數(shù)據(jù)如下表:
景點(diǎn) | |||||
票價(jià)(元) | |||||
平均日人數(shù)(千人) |
如果這個(gè)星期天你去此風(fēng)景區(qū)游玩,小剛、小明也去了,你在哪個(gè)景點(diǎn)遇見他們兩個(gè)的機(jī)會(huì)較大?為什么?
如果到了這個(gè)風(fēng)景區(qū),你不想把這幾個(gè)景點(diǎn)全部參觀完,但又不知選哪一個(gè),于是你想出一個(gè)主意:抓鬮,那么,你抓出哪種票價(jià)的機(jī)會(huì)較大有多大?此時(shí)你參觀哪個(gè)景點(diǎn)的機(jī)會(huì)較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),△ADC和△CEB全等嗎?請(qǐng)說明理由;
(2)聰明的小亮發(fā)現(xiàn),當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),可得DE=AD+BE,請(qǐng)你說明其中的理由;
(3)小亮將直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置,發(fā)現(xiàn)DE、AD、BE之間存在著一個(gè)新的數(shù)量關(guān)系,請(qǐng)直接寫出這一數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B. F. C.E在一條直線上(點(diǎn)F,C之間不能直接測(cè)量),點(diǎn)A,D在直線l的異側(cè),測(cè)得AB=DE,AB∥DE,AC∥DF.
(1)求證:△ABC≌△DEF;
(2)若BE=13m,BF=4m,求FC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用圍棋子擺出的圖案(用棋子的位置用用有序數(shù)對(duì)表示,如點(diǎn)在),如果再擺一黑一白兩枚棋子,使枚棋子組成的圖案既是軸對(duì)稱圖形又是中心對(duì)稱圖形,則下列擺放正確的是( )
A. 黑(3,3),白(3,1) B. 黑(3,1),白(3,3)
C. 黑(1,5),白(5,5) D. 黑(3,2),白(3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是不小于﹣1的實(shí)數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,E為AB的中點(diǎn),G為BC延長線上一點(diǎn),射線EO與∠ACG的角平分線交于點(diǎn)F,若AB=8,BC=6,則線段EF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角中,,若想找一點(diǎn)P,使得與互補(bǔ),甲、乙、丙三人作法分別如下:
甲:以B為圓心,AB長為半徑畫弧交AC于P點(diǎn),則P即為所求;
乙:分別以B,C為圓心,AB,AC長為半徑畫弧交于P點(diǎn),則P即為所求;
丙:作BC的垂直平分線和的平分線,兩線交于P點(diǎn),則P即為所求.
對(duì)于甲、乙、丙三人的作法,下列敘述正確的是
A. 三人皆正確B. 甲、丙正確,乙錯(cuò)誤
C. 甲正確,乙、丙錯(cuò)誤D. 甲錯(cuò)誤,乙、丙正確
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com