【題目】如圖,直線l1∥l2 , 以直線l1上的點A為圓心、適當(dāng)長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=( )
A.23°
B.46°
C.67°
D.78°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( )
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖像交于A、B兩點,與x軸交于點C,已知點A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,﹣1)是反比例函數(shù)圖像上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB上一點,分別以AC、BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.
(1)如圖1,當(dāng)∠DHC=90°時,求 的值;
(2)在(1)的條件下,作點C關(guān)于直線DH的對稱點E,連接AE、BE,求證:CE平分∠AEB;
(3)現(xiàn)將圖1中△DCB繞點C順時針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點C關(guān)于直線DH的對稱點為E,則(2)中的結(jié)論是否成立并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測儀進(jìn)行海上搜救,分別在A、B兩個探測點探測到C處是信號發(fā)射點,已知A、B兩點相距400m,探測線與海平面的夾角分別是30°和60°,若CD的長是點C到海平面的最短距離.
(1)問BD與AB有什么數(shù)量關(guān)系,試說明理由;
(2)求信號發(fā)射點的深度.(結(jié)果精確到1m,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com