【題目】如圖,△ABC中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個(gè)條件中,哪兩個(gè)條件可判定△ABC是等腰三角形(用序號(hào)寫(xiě)出一種情形):_______

【答案】①③②③

【解析】

已知①③條件,先證明BEO≌△CDO再證明ABC=∠ACB最后得到ABC是等腰三角形;已知②③條件可證明BEO≌△CDO,再證明ABC是等腰三角形.

①③或②③.

由①③證明ABC是等腰三角形.

BEOCDO中,

∵∠EBODCO,EOBDOC,BECD.

BEO≌△CDO,

BOCO,

OBCOCB

EBOOBCDCOOCB,

即∠ABCACB,

ABAC.

因此ABC是等腰三角形.

由②③證明ABC是等腰三角形.

BEOCDO中,

∵∠BEO=∠CDO,BECD,∠EOB=∠DOC

∴△BEO≌△CDO,

BOCO

OBCOCB,

EBOOBCDCOOCB

即∠ABCACB,ABAC.

∴△ABC是等腰三角形.

故答案為:①③或②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在同一條直線上,M,N分別為BE,CD的中點(diǎn).

(1)求證:△ABE≌ACD;

(2)判斷△AMN的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無(wú)縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個(gè)平行四邊形的面積一定可以表示為(
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,過(guò)點(diǎn)D作對(duì)角線BD的垂線交BA的延長(zhǎng)線于點(diǎn)E

1)證明:四邊形ACDE是平行四邊形;

2)若AC=8,BD=6,求△ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校準(zhǔn)備組織部分學(xué)生到少年宮參加活動(dòng),陳老師從少年宮帶回來(lái)兩條信息:

信息一:按原來(lái)報(bào)名參加的人數(shù),共需要交費(fèi)用320元,如果參加的人數(shù)能夠增加到原來(lái)人數(shù)的2倍,就可以享受優(yōu)惠,此時(shí)只需交費(fèi)用480元;

信息二:如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來(lái)少4元.

根據(jù)以上信息,原來(lái)報(bào)名參加的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地治理水質(zhì),保護(hù)環(huán)境,某污水處理公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種設(shè)備可供選擇,月處理污水分別為240m3/月、200m3/月.經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)3臺(tái)B型設(shè)備少8萬(wàn)元.

1A、B兩種型號(hào)的設(shè)備每臺(tái)的價(jià)格是多少?

2)若污水處理公司購(gòu)買(mǎi)設(shè)備的預(yù)算資金不超過(guò)125萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案?

3)若每月需處理的污水約2040m3,在不突破(2)中資金預(yù)算的前提下,為了節(jié)約資金,又要保證治污效果,請(qǐng)你為污水處理公司設(shè)計(jì)一種最省錢(qián)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點(diǎn),且AC=CG,過(guò)點(diǎn)C的直線CD⊥BG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F.

(1)求證:CD是⊙O的切線.
(2)若 ,求∠E的度數(shù).
(3)連接AD,在(2)的條件下,若CD= ,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,點(diǎn)E是邊DC上一點(diǎn),連接AEBC的延長(zhǎng)線于點(diǎn)H,點(diǎn)F是邊AB上一點(diǎn),使得,作的角平分線BH于點(diǎn)G,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面夾角是45°時(shí),教學(xué)樓頂部A在地面上的影子F與墻角C的距離為18m(B、F、C在同一直線上).求教學(xué)樓AB的高;(結(jié)果保留整數(shù))(參考數(shù)據(jù):sim22°≈0.37,cos22°≈0.93,tan22°≈0.40)

查看答案和解析>>

同步練習(xí)冊(cè)答案