【題目】如圖,在平面直角坐標(biāo)系中,直線y=與拋物線y=交于A、B兩點,且點Ax軸上,點B的橫坐標(biāo)為-4,點P為直線AB上方的拋物線上一動點(不與點A、B重合),過點Px軸的垂線交直線AB于點Q,PHABH

1)求b的值及sinPQH的值;

2)設(shè)點P的橫坐標(biāo)為t,用含t的代數(shù)式表示點P到直線AB的距離PH的長,并求出PH之長的最大值以及此時t的值;

3)連接PB,若線段PQPBH分成成PQBPQH的面積相等,求此時點P的坐標(biāo).

【答案】1b=-1,;(2,當(dāng)t=-1時,PH有最大值為;(3P-30).

【解析】

1)令y=0,求出點A的坐標(biāo),然后把點A的坐標(biāo)代入直線解析式,求出點B的值,然后根據(jù)點A和點C的坐標(biāo),求出OAOC的長度,根據(jù)勾股定理求出AC的長度,根據(jù)PQOC,可得∠PQH=OCA,然后求出sinPQH的值;

2)求出點P和點Q的坐標(biāo),運用三角函數(shù),求出PH的函數(shù)關(guān)系式,運用求最大值的方法求解即可.

3)作BDPQPQ的延長線于點D,由SPQB=SPQH,得出BQ=QH,利用三角函數(shù)求出QHBQ的關(guān)系式,運用相等的關(guān)系求出t,即可得出點P的坐標(biāo).

解:(1)令y=0得:,化簡x2+x-6=0,解得x1=-3x2=2,

A2,0),

A2,0)在直線上,

1+b=0,解得b=-1

OC=1,OA=2

,

PQOC

∴∠PQH=OCA,

,

2,

,

∴當(dāng)t=-1時,PH有最大值為,

3)如圖,作BDPQPQ的延長線于點D,設(shè)點P的橫坐標(biāo)為t,

SPQB=SPQH

BQ=QH

RTPHQ中,

,

,

,

RTBDQ中,

∵∠BQD=PQH,

,

,

,

,

,

t2+7t+12=0,

t1=-3t2=-4(舍去),

P-3,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,ACBC2,在以AB的中點O為坐標(biāo)原點,AB所在直線為x軸建立的平面直角線坐標(biāo)系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸正半軸上的A′處,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB60°,在∠AOB的平分線OM上有一點C,將一個120°角的頂點與點C重合,它的兩條邊分別與直線OA、OB相交于點DE

1)當(dāng)∠DCE繞點C旋轉(zhuǎn)到CDOA垂直時(如圖1),請猜想OE+ODOC的數(shù)量關(guān)系,并說明理由;

2)當(dāng)∠DCE繞點C旋轉(zhuǎn)到CDOA不垂直時,到達圖2的位置,(1)中的結(jié)論是否成立?并說明理由;

3)當(dāng)∠DCE繞點C旋轉(zhuǎn)到CDOA的反向延長線相交時,上述結(jié)論是否成立?請在圖3中畫出圖形,若成立,請給于證明;若不成立,線段OD、OEOC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為400平方米的花壇區(qū)域進行綠化,安排甲工程隊或乙工程隊完成.已知甲隊平均每天完成綠化的面積是乙隊的2倍,并且甲隊比乙隊能少用4天完成任務(wù),求甲、乙兩工程隊平均每天能完成綠化的面積分別是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程mx2+4-3mx+2m-8=0m0).

1)求證:方程有兩個不相等的實數(shù)根;

2)設(shè)方程的兩個根分別為x1、x2x1x2),若n=x2-x1m,且點Bmn)在x軸上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】特產(chǎn)店銷售一種水果,其進價每千克40元,按60元出售,平均每天可售100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天可增加20千克銷量.

1)若該專賣店銷售這種核桃要想平均每天獲利2240元,每千克水果應(yīng)降多少元?

2)若該專賣店銷售這種核桃要想平均每天獲利最大,每千克水果應(yīng)降多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦ACBD于點E,連接AB,CD,BC

1)求證:∠AOB+COD180°

2)若AB8,CD6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點P在射線CB上運動(不包含點BC),連接DP,交AB于點M,作BEDP于點E,連接AE,作∠FAD=EAB,FADP于點F

(1)如圖a,當(dāng)點PCB的延長線上時,

①求證:DF=BE;

②請判斷DEBE、AE之間的數(shù)量關(guān)系并證明;

(2)如圖b,當(dāng)點P在線段BC上時,DEBE、AE之間有怎樣的數(shù)量關(guān)系?請直接寫出答案,不必證明;

(3)如果將已知中的正方形ABCD換成矩形ABCD,且ADAB=1,其他條件不變,當(dāng)點P在射線CB上時,DE、BE、AE之間又有怎樣的數(shù)量關(guān)系?請直接寫出答案,不必證明.

查看答案和解析>>

同步練習(xí)冊答案