【題目】如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8

1)求對(duì)角線(xiàn)AC的長(zhǎng);

2)點(diǎn)E是線(xiàn)段CD上的一點(diǎn),把ADE沿著直線(xiàn)AE折疊.點(diǎn)D恰好落在線(xiàn)段AC上,與點(diǎn)F重合,求線(xiàn)段DE的長(zhǎng).

【答案】110;(2

【解析】

(1)在直角△ABC中,由勾股定理可求得AC的長(zhǎng);
(2)設(shè)DE=x,則EC=CD-DE=6-x,EF=DE=x.在直角△CEF中,利用勾股定理構(gòu)造方程可求得x的值.

1)在直角ABC中,AC==10;

2)根據(jù)題意得AF=AD=BC=8,DE=EF,FC=AC-AF=10-8=2

設(shè)DE=x,則EC=CD-DE=6-x,EF=DE=x

在直角CEF中,EF2+FC2=EC2,則x2+4=6-x2,解得:x=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=C,FDBC,DEAB,AFD=158°,求∠EDF的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, ABC是直角三角形,∠A=90°,D是斜邊BC的中點(diǎn),E,F分別是AB,AC邊上的動(dòng)點(diǎn),DEDF

(1)如圖(1),連接AD,若AB=AC=17,CF=5,求線(xiàn)段EF的長(zhǎng).

(2)如圖(2),若AB≠AC,寫(xiě)出線(xiàn)段EF與線(xiàn)段BECF之間的等量關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a0)的圖象與反比例函數(shù)y=(k0)的圖象交于第一、三象限內(nèi)的兩點(diǎn)A、B,與y軸交于C點(diǎn).過(guò)點(diǎn)AADy軸,垂足為點(diǎn)D,AD=8,OC=2,tanACD=2.點(diǎn)B的坐標(biāo)為(m,﹣4).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫(xiě)出當(dāng)x取何值時(shí),ax+b﹣0成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格中標(biāo)出了∠1∠2.則∠1+∠2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工藝品廠(chǎng)生產(chǎn)一種汽車(chē)裝飾品,每件生產(chǎn)成本為20元,銷(xiāo)售價(jià)格在30元至80元之間(含30元和80元),銷(xiāo)售過(guò)程中的管理、倉(cāng)儲(chǔ)、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬(wàn)元,其銷(xiāo)售量y(萬(wàn)個(gè))與銷(xiāo)售價(jià)格(元/個(gè))的函數(shù)關(guān)系如圖所示.

(1)當(dāng)30x60時(shí),求y與x的函數(shù)關(guān)系式;

(2)求出該廠(chǎng)生產(chǎn)銷(xiāo)售這種產(chǎn)品的純利潤(rùn)w(萬(wàn)元)與銷(xiāo)售價(jià)格x(元/個(gè))的函數(shù)關(guān)系式;

(3)銷(xiāo)售價(jià)格應(yīng)定為多少元時(shí),獲得利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由27個(gè)相同的小立方塊搭成的幾何體,它的三個(gè)視圖是3×3的正方形,若拿掉若干個(gè)小立方塊(幾何體不倒掉),其三個(gè)視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個(gè)數(shù)為( 。

A. 10 B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形的兩個(gè)內(nèi)角αβ滿(mǎn)足2α+β=90°,那么我們稱(chēng)這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線(xiàn),不難證明ABD準(zhǔn)互余三角形.試問(wèn)在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請(qǐng)求出BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對(duì)角線(xiàn)AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等腰Rt△ABC,BAC=90°點(diǎn)EAC上(且不與點(diǎn)A、C重合.在ABC的外部作等腰Rt△CED,使CED=90°連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF

1求證AEF是等腰直角三角形;

2如圖2,CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線(xiàn)段BC上時(shí),連接AE求證AF=AE;

3如圖3,CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,CEDABC的下方時(shí)AB=2,CE=2求線(xiàn)段AE的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案