【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(點P對應點P′),當AP旋轉至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB交x軸于點,交y軸與點,直線軸正半軸于點M,交線段AB于點C,,連接DA,.
求點D的坐標及過O、D、B三點的拋物線的解析式;
若點P是線段MB上一動點,過點P作x軸的垂線,交AB于點F,交上問中的拋物線于點E.
連接請求出滿足四邊形DCEF為平行四邊形的點P的坐標;
連接CE,是否存在點P,使與相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數,(k為常數,k≠1).
(1)若點A(1,2)在這個函數的圖象上,求k的值;
(2)若在這個函數圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數的圖象上,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖在三角形紙片ABC中,已知∠ABC=90,AC=5,BC=4,過點A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的點P處,折痕為MN,當點P在直線l上移動時,折痕的端點M、N也隨之移動,若限定端點M、N分別在AB、BC邊上(包括端點)移動,則線段AP長度的最大值與最小值的差為________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據兩人的作法可判斷
A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小,此時∠MAN的度數為_________°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀并解決問題.
對于形如x2+2ax+a2這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2ax﹣3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2ax﹣3a2中先加上一項a2,使它與x2+2ax的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像這樣,先添﹣適當項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.
(1)利用“配方法”分解因式:a2﹣6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是實數,當x為何值時,此多項式2x2的最小值是多少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經過的最短距離為_________.(π取3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com