【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(表示烏龜從起點出發(fā)所行的時間,表示烏龜所行的路程,表示兔子所行的路程).
①“龜兔再次賽跑”的路程為______米;
②兔子比烏龜晚出發(fā)______分鐘;
③烏龜在途中休息了______分鐘;
④烏龜?shù)乃俣仁?/span>______米/分;
⑤兔子的速度是______米/分;
⑥兔子在距起點______米處追上烏龜.
【答案】①1000;②40;③10;④20;⑤100;⑥750
【解析】
①由函數(shù)圖像求得①“龜兔再次賽跑”的路程為1000米;
②由函數(shù)圖像求得②兔子比烏龜晚出發(fā)40分鐘;
③由函數(shù)圖像求得③烏龜在途中休息了10分鐘;
④由函數(shù)圖像求得④烏龜跑完全程用了60分鐘,從而可求其速度,
⑤由函數(shù)圖像求得⑤兔子跑完全程用了10分鐘,從而可求其速度,
⑥利用追擊時間=追擊路程÷速度差求得追擊時間,從而求解.
解:①有函數(shù)圖像可得:龜兔再次賽跑的路程為1000米
故答案為:1000;
②兔子比烏龜晚出發(fā)40分鐘,
故答案為:40;
③烏龜在途中休息了10分鐘,
故答案為:10;
④烏龜?shù)乃俣葹椋?/span>1000÷50=20米/分,
故答案為:20;
⑤兔子的速度為:1000÷10=100米/分,
故答案為:100;
⑥兔子追上烏龜時離起點的距離為:20×30÷(100-20)×100=750米,
故答案為:750.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在小山的東側(cè)A莊,有一熱氣球,由于受西風的影響,以每分鐘35米的速度沿著與水平方向成75度角的方向飛行,40分鐘時到達C處,此時氣球上的人發(fā)現(xiàn)氣球與山頂P點及小山西側(cè)的B莊在一條直線上,同時測得B莊的俯角為30度,又在A莊測得山頂P的仰角為45度,求A莊與B莊的距離___________,山高__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點A,且點A的橫坐標為4.
(1)求點A的坐標及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點B、C,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經(jīng)核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P與點 Q 都在y軸上,且關于x軸對稱.
(1)請畫出△ABP 關于x軸的對稱圖形 (其中點 A 的對稱點用 表示,點 的對稱點用 表示);
(2)點P ,Q 同時都從y軸上的位置出發(fā),分別沿l1,l2方向,以相同的速度向右運動,在運動過程中是否在某個位置使得 成立?若存在,請你在圖中畫出此時 PQ 的位置(用線段 表示),若不存在,請你說明理由(注:畫圖時,先用鉛筆畫好,再用鋼筆描黑).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,貴陽市某中學數(shù)學活動小組在學習了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?/span>30°.且D離地面的高度DE=5m.坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個小正方形的邊長都是1.均在網(wǎng)格的格點上.
(1)直接寫出四邊形的面積與、的長度;
(2)是直角嗎?請說出你的判斷理由.
(3)找到一個格點,并畫出四邊形,使得其面積與四邊形的面積相等.
解:(1)___________;___________;___________.
(2)判斷___________(填“是”或“否”)
理由_________________________________________________;
(3)在圖中畫出一個滿足條件的四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線y=﹣2x+4與兩坐標軸分別交于點A、B,點C為線段OA上一動點,連接BC,作BC的中垂線分別交OB、AB交于點D、E.
(l)當點C與點O重合時,DE= ;
(2)當CE∥OB時,證明此時四邊形BDCE為菱形;
(3)在點C的運動過程中,直接寫出OD的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com