(本小題滿分12分)如圖1,已知拋物線經(jīng)過坐標(biāo)原點(diǎn)軸上另一點(diǎn),頂點(diǎn)的坐標(biāo)為;矩形的頂點(diǎn)與點(diǎn)重合,分別在軸、軸上,且,
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)將矩形以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)也以相同的速度從點(diǎn)出發(fā)向勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為秒(),直線與該拋物線的交點(diǎn)為(如圖2所示).
①當(dāng)時(shí),判斷點(diǎn)是否在直線上,并說明理由;
②設(shè)以為頂點(diǎn)的多邊形面積為,試問是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

解:(1)因所求拋物線的頂點(diǎn)的坐標(biāo)為(2,4),
故可設(shè)其關(guān)系式為
又拋物線經(jīng)過,于是得,
解得
∴所求函數(shù)關(guān)系式為,即
(2)①點(diǎn)不在直線上.
根據(jù)拋物線的對(duì)稱性可知點(diǎn)的坐標(biāo)為(4,0),
的坐標(biāo)為(2,4),設(shè)直線的關(guān)系式為
于是得,解得
所以直線的關(guān)系式為
由已知條件易得,當(dāng)時(shí),,∴
點(diǎn)的坐標(biāo)不滿足直線的關(guān)系式,
∴當(dāng)時(shí),點(diǎn)不在直線上.
存在最大值.理由如下:
∵點(diǎn)軸的非負(fù)半軸上,且在拋物線上,
,
∴點(diǎn)的坐標(biāo)分別為,
),
,

(i)當(dāng),即時(shí),以點(diǎn)為頂點(diǎn)的多邊形是三角形,此三角形的高為,∴
(ii)當(dāng)時(shí),以點(diǎn)為頂點(diǎn)的多邊形是四邊形,
,
,
其中(),由,,此時(shí)
綜上所述,當(dāng)時(shí),以點(diǎn)為頂點(diǎn)的多邊形面積有最大值,這個(gè)最大值為
說明:(ii)中的關(guān)系式,當(dāng)時(shí)也適合.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年九年級(jí)第二次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點(diǎn),根據(jù)圖中信息解答下列問題:

1.(1)寫出A點(diǎn)的坐標(biāo);

2.(2)求反比例函數(shù)的解析式;

3.(3)若點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90°后得到點(diǎn)C,請(qǐng)寫出點(diǎn)C的坐標(biāo);并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點(diǎn)A 順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止。不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE、DF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖(2)。

1.(1)問:始終與△AGC相似的三角形有                ;

2.(2)設(shè)CG=x,BH=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)2的情況說明理由);

3.(3)問:當(dāng)x為何值時(shí),△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長(zhǎng)AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長(zhǎng)。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實(shí)可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長(zhǎng)?理由是         ,若ED=m,則AB=      。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇GSJY八年級(jí)第二次學(xué)情調(diào)研考試數(shù)學(xué)卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點(diǎn)A,B在直線同側(cè),在直線上找一點(diǎn)P,使AP+BP的值最。

    做法如下:作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),連接,與直線的交點(diǎn)就是所求的點(diǎn)P

    再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。

做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實(shí)踐運(yùn)用

   如圖,菱形ABCD的兩條對(duì)角線分別長(zhǎng)6和8,點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M、N分別是邊AB、BC的中點(diǎn),求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆湖北省孝感市七年級(jí)下學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案