【題目】(探究活動(dòng))
(1)問題發(fā)現(xiàn):如圖①,直線AB∥CD,E是AB與AD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
請(qǐng)把下面的證明過程補(bǔ)充完整:
證明:過點(diǎn)E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等量代換)
即∠B+∠C=∠BEC.
(2)拓展探究:如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,試探究∠B、∠C、∠BEC的數(shù)量關(guān)系并證明;
(3)解決問題:如圖③,AB∥DC,∠C=120°,∠AEC=80°,則∠A= .(直接寫出結(jié)論,不用寫計(jì)算過程)
【答案】(1)平行與同一條直線的兩條直線互相平行;兩直線平行,內(nèi)錯(cuò)角相等;∠BEF+∠CEF;(2)∠B+∠BEC+∠C=360°,理由見解析;(3)20°
【解析】
(1)過點(diǎn)E作EF∥AB,根據(jù)平行線的判定得出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出即可;
(2)過點(diǎn)E作EF∥AB,根據(jù)平行線的判定得出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出即可;
(3)過點(diǎn)E作EF∥AB,根據(jù)平行線的判定得出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出即可.
(1)過點(diǎn)E作EF∥AB,
∵AB∥DC(已知),
∴EF∥DC(平行與同一條直線的兩條直線互相平行)
∴∠C=∠CEF.(兩直線平行,內(nèi)錯(cuò)角相等)
∵EF∥AB,
∴∠B=∠BEF(同理),
∴∠B+∠C=∠BEF+∠CEF(等量代換)
即∠B+∠C=∠BEC.
故答案為:平行與同一條直線的兩條直線互相平行;兩直線平行,內(nèi)錯(cuò)角相等;∠BEF+∠CEF;
(2)∠B、∠C、∠BEC的數(shù)量關(guān)系是:∠B+∠BEC+∠C=360°
證明:過點(diǎn)E作EF∥AB,
∵AB∥DC,EF∥AB,
∴EF∥DC,
∴∠B+∠BEF=180°,∠C+∠CEF=180°,
又∵∠BEC=∠BEF+∠CEF
∴∠B+∠C+∠BEC
=∠B+∠C+∠BEF+∠CEF=360°,
即:∠B+∠BEC+∠C=360°
(3) 如圖③,過點(diǎn)E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC(平行于同一直線的兩直線平行),
∴∠C+∠CEF=180°,∠A=∠AEF,
∴∠CEF =180°-∠C =60°
∴∠AEF =∠AEC-∠CEF=20°,
∴∠A=20°
故答案為:20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王購(gòu)買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:
(1)用含、的代數(shù)式表示地面總面積;
(2)已知客廳面積比衛(wèi)生間面積多21平方米,且地面總面積是衛(wèi)生間面積的15倍.若鋪1平方米地磚的平均費(fèi)用為100元,那么鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市計(jì)劃在城區(qū)投放一批“共享單車”,這批單車分為A,B兩種不同款型,其中A型車單價(jià)400元,B型車單價(jià)320元.
(1)在“共享單車”試點(diǎn),投放A,B兩種款型的單車共100輛,總價(jià)值36 800元.試問本次試點(diǎn)投放的A型車與B型車各多少輛?
設(shè)本次試點(diǎn)投放的A型車輛、B型車輛.
根據(jù)題意,列方程組___________
解這個(gè)方程組,得___________
答: .
(2)該市決定在整個(gè)城區(qū)投放 “共享單車”.按照(Ⅰ)中試點(diǎn)投放A,B兩車型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.請(qǐng)問整個(gè)城區(qū)投放的A型車至少多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計(jì)劃租用甲、乙兩種車輛快遞貨物,從貨物量來(lái)計(jì)算:若租用兩種車輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車輛單獨(dú)完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車輛合運(yùn)需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨(dú)租甲種車輛、單獨(dú)租乙種車輛這三種租車方案中,哪一種租金最少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中.
(1)寫出點(diǎn)A,點(diǎn)B的坐標(biāo)A( , ),B( , );
(2)S△ABC= ;
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A1B1C1,在圖中畫出△A1B1C1的位置,并寫出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點(diǎn)C在OM上,OC=5,且點(diǎn)C到OA的距離為3.過點(diǎn)C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA不垂直時(shí)(如圖2),上述結(jié)論是否成立?并說(shuō)明理由;
(2)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA的反向延長(zhǎng)線相交于點(diǎn)D時(shí):
①請(qǐng)?jiān)趫D3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且∠AFE=∠A,DM∥EF交AC于點(diǎn)M.
(1)求證:DM=DA;
(2)如圖②,點(diǎn)G在BE上,且∠BDG=∠C.求證:△DEG∽△ECF;
(3)在(2)的條件下,已知EF=2,CE=3,求GE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,為上一點(diǎn),連接,,點(diǎn)在上,連接BE,∠C=∠DEB,若BE=3,AB=4,則線段AE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com