【題目】如圖,在平面直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A,B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若點(diǎn)P為直線AB上的一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形?求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎?如果是,試說(shuō)明理由;如果不是,請(qǐng)?jiān)诰段AB上求一點(diǎn)C,使得△CBO是等腰三角形.
【答案】(1) ;(2)P點(diǎn)坐標(biāo)為(-2,3);(3)是,理由見(jiàn)解析
【解析】試題分析:(1)令x=0代入y=kx+b得出點(diǎn)B的坐標(biāo),根據(jù)△ABO的面積易求點(diǎn)A的坐標(biāo).把點(diǎn)A的坐標(biāo)代入解析式求出k值即可; (2)過(guò)點(diǎn)P作OA的垂線交OA于點(diǎn)M,連接OP.根據(jù)等腰三角形的三線合一的性質(zhì)推出點(diǎn)P的橫坐標(biāo),代入解析式可求出點(diǎn)P的縱坐標(biāo),從而求出點(diǎn)P的坐標(biāo);(3)△PBO是等腰三角形,根據(jù)已知條件易證∠ABO=∠POB,即可證得結(jié)論.
試題解析:
(1)對(duì)于y=kx+6,設(shè)x=0,得y=6.
∴B(0,6),OB=6.
∵△ABO的面積為12,
∴AO·OB=12,即AO×6=12.
解得OA=4.
∴A(-4,0).
把A(-4,0)代入y=kx+6,得-4k+6=0.
解得k=.
(2)過(guò)點(diǎn)P作OA的垂線交OA于點(diǎn)M,連接OP.
∵PA=PO,PM⊥OA,
∴OM=OA=2.
∴可設(shè)P(-2,n).
把P(-2,n)代入y=x+6,得n=3.
∴P點(diǎn)坐標(biāo)為(-2,3).
(3)△PBO是等腰三角形.理由如下:
∵△PAO是以OA為底的等腰三角形,
∴∠PAO=∠POA.
∵∠PAO+∠ABO=90°,∠POA+∠POB=90°,
∴∠ABO=∠POB.
∴PB=PO.
∴△PBO是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,不正確的是( )
A.零是整數(shù)
B.零沒(méi)有倒數(shù)
C.零是最小的數(shù)
D.-1是最大的負(fù)整數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果多項(xiàng)式16x2+1加上一個(gè)單項(xiàng)式后成為一個(gè)多項(xiàng)式的完全平方,則這個(gè)單項(xiàng)式是____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:△ABC中,∠C=45°,點(diǎn)D在AC上,且∠ADB=60°,AB為△BCD外接圓的切線.
(1)用尺規(guī)作出△BCD的外接圓(保留作圖痕跡,可不寫作法);
(2)求∠A的度數(shù);
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)從小到大排列為1,2,4,x,6,8.這組數(shù)據(jù)的中位數(shù)是5,那么這組數(shù)據(jù)的眾數(shù)為( )
A. 4 B. 5 C. 5.5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一間中學(xué)就讀的李浩與王真是兩鄰居,平時(shí)他們一起騎自行車上學(xué),清明節(jié)后的一天,李浩因有事,比王真遲了10分鐘出發(fā),為了能趕上王真,李浩用了王真速度的1.2倍騎車追趕,結(jié)果他們?cè)趯W(xué)校大門處相遇,已知他們家離學(xué)校大門處的騎車距離為15千米.求王真的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M在第三象限,且到x軸的距離為5,到y軸的距離為3,則M點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s.解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?
(2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?(直接寫出答案即可);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com