【題目】小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時,能否順利通過直角彎道的標(biāo)準(zhǔn)是,車輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點G,若GF的長度至少能達(dá)到車身寬度,即車輛能通過.
(1)小平認(rèn)為長8m,寬3m的消防車不能通過該直角轉(zhuǎn)彎,請你幫他說明理由;
(2)小平提出將拐彎處改為圓。 和 是以O(shè)為圓心,分別以O(shè)M和ON為半徑的弧),長8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時,這種消防車可以通過該巷子?
【答案】
(1)解:消防車不能通過該直角轉(zhuǎn)彎.
理由如下:如圖,作FH⊥EC,垂足為H,
∵FH=EH=4,
∴EF=4 ,且∠GEC=45°,
∵GC=4,
∴GE=GC=4,
∴GF=4 ﹣4<3,
即GF的長度未達(dá)到車身寬度,
∴消防車不能通過該直角轉(zhuǎn)彎
(2)解:若C、D分別與M′、M重合,則△OGM為等腰直角三角形,
∴OG=4,OM=4 ,
∴OF=ON=OM﹣MN=4 ﹣4,
∴FG=OG﹣OF= ×8﹣(4 ﹣4)=8﹣4 <3,
∴C、D在 上,
設(shè)ON=x,連接OC,在Rt△OCG中,
OG=x+3,OC=x+4,CG=4,
由勾股定理得,OG2+CG2=OC2,
即(x+3)2+42=(x+4)2,
解得x=4.5.
答:ON至少為4.5米
【解析】(1)過點F作FH⊥EC于點H,根據(jù)道路的寬度求出FH=EH=4m,然后根據(jù)等腰直角三角形的性質(zhì)求出EF、GE的長度,相減即可得到GF的長度,如果不小于車身寬度,則消防車能通過,否則,不能通過;(2)假設(shè)車身C、D分別與點M′、M重合,根據(jù)等腰直角三角形的性質(zhì)求出OG= CD=4,OC= CG=4 ,然后求出OF的長度,從而求出可以通過的車寬FG的長度,如果不小于車寬,則消防車能夠通過,否則,不能通過;設(shè)ON=x,表示出OC=x+4,OG=x+3,又OG= CD=4,在Rt△OCG中,利用勾股定理列式進(jìn)行計算即可求出ON的最小值.
【考點精析】利用等腰直角三角形和勾股定理的概念對題目進(jìn)行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年5月份,某市測得一周大氣的PM2.5的日均值(單位:微克/立方米)如下:31,35,31,33,30,33,31.對于這組數(shù)據(jù)下列說法正確的是( )
A.眾數(shù)是30
B.中位數(shù)是31
C.平均數(shù)是33
D.方差是32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實驗操作考試,某校對初三學(xué)生進(jìn)行了模擬訓(xùn)練,物理、化學(xué)各有4各不同的操作實驗題目,物理用番號①、②、③、④代表,化學(xué)用字母a、b、c、d表示,測試時每名學(xué)生每科只操作一個實驗,實驗的題目由學(xué)生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學(xué)實驗題目.
(1)請用樹形圖法或列表法,表示某個同學(xué)抽簽的各種可能情況.
(2)小張同學(xué)對物理的①、②和化學(xué)的b、c號實驗準(zhǔn)備得較好,他同時抽到兩科都準(zhǔn)備的較好的實驗題目的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,
①若AD是∠BAC的平分線,則∠_______=∠_______=∠________;
②若AE=CE,則BE是AC邊上的___________________;
③若CF是AB邊上的高,則∠____=∠______=90°,CF__________AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)
(1)過點C畫AB的平行線;
(2)過點B畫AC的垂線,垂足為點G;過點B畫AB的垂線,交AC的延長線于H.
(3)點B到AC的距離是線段 的長度,線段AB的長度是點 到直線
的距離.
(4)線段BG、AB的大小關(guān)系為:BG AB(填“>”、“<”或“=”),理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再解決問題,例題:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0
∴n=3,m=﹣3
(1)若x2+2y2﹣2xy+4y+4=0,求xy的值
(2)已知△ABC的三邊長a,b,c都是正整數(shù),且滿足a2+b2﹣6a﹣6b+18+|3﹣c|=0,請問△ABC是怎樣形狀的三角形?
(3)根據(jù)以上的方法是說明代數(shù)式:x2+4x+y2﹣8y+21的值一定是一個正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)觀察下面由“※”組成的圖案和算式,解答問題:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)請計算:
1+3+5+7+9+ … +19= ;
(2)請猜想:
1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;
(3)請用上述規(guī)律計算:
103+105+107+ … +2013+2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有60個工人,生產(chǎn)甲、乙兩種零件,每人每天平均能生產(chǎn)甲種零件24個或乙種零件12個.已知每2個甲種零件和3個乙種零件配成一套,問應(yīng)分配多少人生產(chǎn)甲種零件,多少人生產(chǎn)乙種零件,才能使每天生產(chǎn)的這兩種零件剛好配套?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com