【題目】我市某學(xué)校在“行讀石鼓閣”研學(xué)活動(dòng)中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標(biāo).建筑面積7200平方米,為我國(guó)西北第一高閣.秦漢高臺(tái)門闕的建筑風(fēng)格,追求穩(wěn)定之中的飛揚(yáng)靈動(dòng),深厚之中的巧妙組合,使景觀功能和標(biāo)志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學(xué)李梅對(duì)石鼓閣進(jìn)行測(cè)量.測(cè)量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),李梅看著鏡面上的標(biāo)記,她來(lái)回走動(dòng),走到點(diǎn)D時(shí),看到“石鼓閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽(yáng)光下,小亮從D點(diǎn)沿DM方向走了29.4米,此時(shí)“石鼓閣”影子與小亮的影子頂端恰好重合,測(cè)得小亮身高1.7米,影長(zhǎng)FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測(cè)量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“石鼓閣”的高AB的長(zhǎng)度.
【答案】“石鼓閣”的高AB的長(zhǎng)度為56m.
【解析】
根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質(zhì)可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計(jì)算即可得出結(jié)論.
由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,
由反射定律可知:∠ACB=∠ECD,
則△ABC∽△EDC,
∴=,
即=①,
∵∠AHB=∠GHF,
∴△ABH∽△GFH,
∴=,即=②,
聯(lián)立①②,解得:AB=56,
答:“石鼓閣”的高AB的長(zhǎng)度為56m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步營(yíng)造掃黑除惡專項(xiàng)斗爭(zhēng)的濃厚宣傳氛圍,推進(jìn)平安校園建設(shè),甲、乙兩所學(xué)校各租用一輛大巴車組織部分師生,分別從距目的地240千米和270千米的兩地同時(shí)出發(fā),前往“研學(xué)教育”基地開展掃黑除惡教育活動(dòng),已知乙校師生所乘大巴車的平均速度是甲校師生所乘大巴車的平均速度的1.5倍,甲校師生比乙校師生晚1小時(shí)到達(dá)目的地,分別求甲、乙兩所學(xué)校師生所乘大巴車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有位農(nóng)場(chǎng)主有一大片田地,其形狀恰好是一個(gè)平行四邊形,并且在對(duì)角線上有一口水井.農(nóng)場(chǎng)主臨死前留下遺囑,把兩塊三角形的田地(即圖中陰影部分)給小兒子,剩下的全部給大兒子,至于水井,正好兩兒子共用,由于平行四邊形兩邊長(zhǎng)不同,所以遺囑公布之后,親友們七嘴八舌,議論紛紛,認(rèn)為這個(gè)分配不公平,那么你認(rèn)為________.(填“公平”或“不公平”)理由是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長(zhǎng)為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在上,連接,將沿直線翻折后,點(diǎn)恰好落在邊的點(diǎn)處若,,則點(diǎn)到的距離是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,過點(diǎn)D作∠ABD=∠ADE,交AC于點(diǎn)E.
(1)求證:DE為⊙O的切線.
(2)若⊙O的半徑為,AD=,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題探究
(1)如圖①,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為 ;
(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個(gè)不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說明理由;
問題解決
(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點(diǎn)D,則對(duì)角線AC的長(zhǎng)是否存在最大值?若存在,請(qǐng)求出其最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長(zhǎng)為半徑畫弧,兩弧交于C,D兩點(diǎn),作直線CD交AB于點(diǎn)M,DE∥AB,BE∥CD.
(1)判斷四邊形ACBD的形狀,并說明理由;
(2)求證:ME=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)一次函數(shù)的圖像上,位于x軸上方的點(diǎn)的橫坐標(biāo)的范圍是________.
(2)當(dāng)時(shí),直線在x軸的上方,則不等式的解集是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com