矩形DEFG內(nèi)接于等邊三角形ABC,若EG⊥AC,則四邊形ABEG與三角形CEG的面積比值為


  1. A.
    數(shù)學公式
  2. B.
    2
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
D
分析:根據(jù)等邊三角形的性質(zhì),表示出等邊三角形的高以及各邊長的長度,進而求出四邊形與三角形的面積即可求出答案.
解答:解:作AM⊥BC,垂足為M,
∵矩形DEFG內(nèi)接于等邊三角形ABC,EG⊥AC,
∴∠C=60°,∠GEC=30°,∠GFC=90°,
∴∠FGC=30°,
設FC=x,則•BE=x,
∴GC=2x,(在直角三角形中30°所對的邊等于斜邊的一半),
∴EC=4x,GF=x,
則BC=AC=AB=5x,
∴AM==x,
∴S△EGC=×GF×EC=×x×4x=2x2,
∴S△ABC=×AM×BC=×x×5x=x2
∴S四邊形ABEG=x2-2x2=x2,
∴四邊形ABEG與三角形CEG的面積比值為:x2÷2x2=,
故選:D.
點評:此題主要考查了等邊三角形的性質(zhì)以及解直角三角形和三角形面積求法、矩形性質(zhì)等知識,利用已知用同一未知數(shù)表示出各邊長度是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(根據(jù)課本習題改編)如圖1,在△ABC中,∠C=90°,AC=4,BC=3,四邊形DEFG為△ABC的內(nèi)接正方形,若設正方形的邊長為x,容易算出x的長為
6037

探究與計算:
(1)如圖2,若三角形內(nèi)有并排的兩個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為
 
;
(2)如圖3,若三角形內(nèi)有并排的三個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為
 
;
(3)如圖4,若三角形內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于△ABC,請你猜想正方形的邊長是多少?并對你的猜想進行證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第19章《相似形》常考題集(13):19.6 相似三角形的性質(zhì)(解析版) 題型:解答題

(根據(jù)課本習題改編)如圖1,在△ABC中,∠C=90°,AC=4,BC=3,四邊形DEFG為△ABC的內(nèi)接正方形,若設正方形的邊長為x,容易算出x的長為
探究與計算:
(1)如圖2,若三角形內(nèi)有并排的兩個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(2)如圖3,若三角形內(nèi)有并排的三個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(3)如圖4,若三角形內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于△ABC,請你猜想正方形的邊長是多少?并對你的猜想進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源:第29章《相似形》?碱}集(12):29.5 相似三角形的性質(zhì)(解析版) 題型:解答題

(根據(jù)課本習題改編)如圖1,在△ABC中,∠C=90°,AC=4,BC=3,四邊形DEFG為△ABC的內(nèi)接正方形,若設正方形的邊長為x,容易算出x的長為
探究與計算:
(1)如圖2,若三角形內(nèi)有并排的兩個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(2)如圖3,若三角形內(nèi)有并排的三個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(3)如圖4,若三角形內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于△ABC,請你猜想正方形的邊長是多少?并對你的猜想進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年浙江省金華市九年級(上)十二月數(shù)學階段測試卷(解析版) 題型:解答題

(根據(jù)課本習題改編)如圖1,在△ABC中,∠C=90°,AC=4,BC=3,四邊形DEFG為△ABC的內(nèi)接正方形,若設正方形的邊長為x,容易算出x的長為
探究與計算:
(1)如圖2,若三角形內(nèi)有并排的兩個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(2)如圖3,若三角形內(nèi)有并排的三個全等的正方形,它們組成的矩形內(nèi)接于△ABC,則正方形的邊長為______;
(3)如圖4,若三角形內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于△ABC,請你猜想正方形的邊長是多少?并對你的猜想進行證明.

查看答案和解析>>

同步練習冊答案