【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
【答案】B
【解析】解:過(guò)A點(diǎn)作AH⊥BC于H,
∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,BH=CH=AH= BC=2,
當(dāng)0≤x≤2時(shí),如圖1,
∵∠B=45°,
∴PD=BD=x,
∴y= xx= x2;
當(dāng)2<x≤4時(shí),如圖2,
∵∠C=45°,
∴PD=CD=4﹣x,
∴y= (4﹣x)x=﹣ x2+2x,
故選B
過(guò)A點(diǎn)作AH⊥BC于H,利用等腰直角三角形的性質(zhì)得到∠B=∠C=45°,BH=CH=AH= BC=2,分類(lèi)討論:當(dāng)0≤x≤2時(shí),如圖1,易得PD=BD=x,根據(jù)三角形面積公式得到y(tǒng)= x2;當(dāng)2<x≤4時(shí),如圖2,易得PD=CD=4﹣x,根據(jù)三角形面積公式得到y(tǒng)=﹣ x2+2x,于是可判斷當(dāng)0≤x≤2時(shí),y與x的函數(shù)關(guān)系的圖象為開(kāi)口向上的拋物線(xiàn)的一部分,當(dāng)2<x≤4時(shí),y與x的函數(shù)關(guān)系的圖象為開(kāi)口向下的拋物線(xiàn)的一部分,然后利用此特征可對(duì)四個(gè)選項(xiàng)進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的面積是63,D是BC上的一點(diǎn),且BD:CD=2:1,DE∥AC交AB于E,延長(zhǎng)DE到F,使FE:ED=2:1,則△CDF的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫(huà)出△A1B1C1和△A2B2C2;
①把△ABC先向右平移4個(gè)單位,再向上平移1個(gè)單位,得到△A1B1C1;
②以圖中的O為位似中心,將△A1B1C1作位似變換且放大到原來(lái)的兩倍,得到△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題
(1)問(wèn)題發(fā)現(xiàn):
如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、AB上的點(diǎn),且CE=BF,連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C,請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是 .
(2)拓展探究:
如圖2,若點(diǎn)E、F分別是CB、BA延長(zhǎng)線(xiàn)上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)出判斷判斷予以證明;
(3)類(lèi)比延伸:
如圖3,若點(diǎn)E、F分別是BC、AB延長(zhǎng)線(xiàn)上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖A、F、B、C是半圓O上的四個(gè)點(diǎn),四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點(diǎn)E,過(guò)點(diǎn)C作OF的平行線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)AF交直線(xiàn)CD于點(diǎn)H.
(1)求證:CD是半圓O的切線(xiàn);
(2)求 的比值;若DH=6,求EF和半徑OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的四個(gè)頂點(diǎn)在坐標(biāo)軸上,A點(diǎn)坐標(biāo)為(3,0),假設(shè)有甲、乙兩個(gè)物體分別由點(diǎn)A同時(shí)出發(fā),沿正方形ABCD的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),物體乙按順時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),如果甲物體12秒鐘可環(huán)繞一周回到A點(diǎn),乙物體24秒鐘可環(huán)繞一周回到A點(diǎn),則兩個(gè)物體運(yùn)動(dòng)后的第2017次相遇地點(diǎn)的坐標(biāo)是( )
A.(3,0)
B.(﹣1,2)
C.(﹣3,0)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:4sin60°﹣|3﹣ |+( )﹣2;
(2)解方程:x2﹣ x﹣ =0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)L:y=ax2+2(a﹣1)x﹣4(常數(shù)a>0)經(jīng)過(guò)點(diǎn)A(﹣2,0)和點(diǎn)B(0,﹣4),與x軸的正半軸交于點(diǎn)E,過(guò)點(diǎn)B作BC⊥y軸,交L于點(diǎn)C,以O(shè)B,BC為邊作矩形OBCD.
(1)當(dāng)x=2時(shí),L取得最低點(diǎn),求L的解析式.
(2)用含a的代數(shù)式分別表示點(diǎn)C和點(diǎn)E的坐標(biāo);
(3)當(dāng)S矩形OBCD=4時(shí),求a的值.
(4)如圖2,作射線(xiàn)AB,OC,當(dāng)AB∥OC時(shí),將矩形OBCD從點(diǎn)O沿射線(xiàn)OC方向平移,平移后對(duì)應(yīng)的矩形記作O′B′C′D′,直接寫(xiě)出點(diǎn)A到直線(xiàn)BD′的最大距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com