【題目】如圖1,以△ABC的邊AB為直徑作⊙O,交AC邊于點(diǎn)E,BD平分∠ABE交AC于F,交⊙O于點(diǎn)D,且∠BDE=∠CBE.
(1)求證:BC是⊙O的切線;
(2)延長(zhǎng)ED交直線AB于點(diǎn)P,如圖2,若PA=AO,DE=3,DF=2,求的值及AO的長(zhǎng).
【答案】(1)答案見(jiàn)解析;(2),AO=.
【解析】試題分析:(1)根據(jù)圓周角定理可知∠BAE+∠EBA=90°,由∠BAE=∠BDE,∠BDE=∠CBE,所以∠EBA+∠EBC=90°.
(2)易證OD∥DE,從而可知,易證△EDF∽△BDE,DE2=DFDB,從而可求出DB的長(zhǎng)度,由勾股定理可知AB的長(zhǎng)度.
試題解析:解:(1)∵AB是直徑,∴∠BAE+∠EBA=90°.∵∠BAE=∠BDE,∠BDE=∠CBE,∴∠EBA+∠EBC=90°,∴BC是⊙O的切線;
(2)連接OD.∵BD平分∠ABE,∴∠OBD=∠EBD.∵∠ODB=∠OBD,∴∠ODB=∠DBE,∴OD∥BE.∵PA=AO,∴.∵∠DEF=∠DBA,∴∠DEF=∠EBD.∵∠EDF=∠EDB,∴△EDF∽△BDE,∴,∴DE2=DFDB,∴DB=,∴由勾股定理可知:AB2=AD2+BD2,∴AB=,∴AO=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個(gè)三角形按圖①方式擺放,使點(diǎn)E落在AB上,DE的延長(zhǎng)線交BC于點(diǎn)F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長(zhǎng)線于點(diǎn)F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫(xiě)出此時(shí)BF、EF與DE之間的等量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳環(huán)保,你我同行”.近幾年,各大城市的公共自行車給市民出行帶來(lái)了極大的方便.圖①是公共自行車的實(shí)物圖,圖②是公共自行車的車架示意圖,點(diǎn)A.D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°.
(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)圖題:(不寫(xiě)畫(huà)法)
(1)如圖①,在 10×10 的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位. 請(qǐng)作出△ABC 繞點(diǎn)P逆時(shí)針旋轉(zhuǎn) 90°的△A′B′C′;
(2)如圖②,四邊形A′B′C′D′是由四邊形ABCD繞某一點(diǎn)旋轉(zhuǎn)得到的,請(qǐng)通過(guò)作圖確定這個(gè)點(diǎn),并把它命名為點(diǎn)O,再把四邊形ABCD關(guān)于點(diǎn)O的中心對(duì)稱圖形A′B′C′D′畫(huà)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過(guò)批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)直接寫(xiě)出點(diǎn)C,D的坐標(biāo),求出四邊形ABDC的面積;
(2)在x軸上是否存在一點(diǎn)F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次籃球聯(lián)賽初賽階段,每隊(duì)有場(chǎng)比賽,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得分, 負(fù)一場(chǎng)得分,積分超過(guò)分才能獲得參賽資格.
(1)已知甲隊(duì)在初賽階段的積分為分,求甲隊(duì)初賽階段勝、負(fù)各多少場(chǎng);
(2)如果乙隊(duì)要獲得參加決賽資格,那么乙隊(duì)在初賽階段至少要?jiǎng)俣嗌賵?chǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山居民(記為C)、李莊古鎮(zhèn)(記為D)中的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為________;
(2)用畫(huà)樹(shù)狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)在第一象限,軸于點(diǎn),軸于點(diǎn).一次函數(shù)的圖象分別交軸、軸于點(diǎn)、,且,,.
(1)求點(diǎn)的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式:
(3)根據(jù)圖象寫(xiě)出當(dāng)時(shí),一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com