【題目】某校為了了解學(xué)生課外閱讀情況,隨機(jī)抽查了50名學(xué)生,統(tǒng)計(jì)他們平均每天課外閱讀時(shí)間(t小時(shí)).根據(jù)t的長(zhǎng)短分為A,B,CD四類(lèi),下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計(jì)圖表.請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:

1)求表格中的a的值,并在圖中補(bǔ)全條形統(tǒng)計(jì)圖;

2)該,F(xiàn)有1300名學(xué)生,請(qǐng)你估計(jì)該校共有多少名學(xué)生課外閱讀時(shí)間不少于1小時(shí)?50名學(xué)生平均每天課外閱讀時(shí)間統(tǒng)計(jì)表

類(lèi)別

時(shí)間t(小時(shí))

人數(shù)

A

t0.5

10

B

0.5t1

20

C

1t1.5

15

D

t1.5

a

【答案】1a值為5,見(jiàn)解析;(2)共有520名學(xué)生課外閱讀時(shí)間不少于1小時(shí).

【解析】

1)用抽查的學(xué)生的總?cè)藬?shù)減去A,BC三類(lèi)的人數(shù)即為D類(lèi)的人數(shù)也就是a的值,并補(bǔ)全統(tǒng)計(jì)圖;
2)先求出課外閱讀時(shí)間不少于1小時(shí)的學(xué)生占的比例,再乘以1300即可.

解:(150-10-20-15=5(名),
a的值為5,條形統(tǒng)計(jì)圖如下:

21300×=520(名)

答:共有520名學(xué)生課外閱讀時(shí)間不少于1小時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為25,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分別落在邊AD、AB、BC、CD上,則每個(gè)小正方形的邊長(zhǎng)為( )

A.6 B.5 C.2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有兩條邊長(zhǎng)的比值為的直角三角形叫潛力三角形.如圖,在ABC中,∠B=90°,DAB的中點(diǎn),ECD的中點(diǎn),DFAEBC于點(diǎn)F.

(1)設(shè)潛力三角形較短直角邊長(zhǎng)為a,斜邊長(zhǎng)為c,請(qǐng)你直接寫(xiě)出的值為   ;

(2)若∠AED=DCB,求證:BDF潛力三角形”;

(3)若BDF潛力三角形,且BF=1,求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM

(1)求證: DMCE;

(2)AD6BD8,DM2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過(guò)8min時(shí),材料溫度降為600℃.煅燒時(shí)溫度y)與時(shí)間xmin)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y)與時(shí)間xmin)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃

1)分別求出材料煅燒和鍛造時(shí)yx的函數(shù)關(guān)系式,并且寫(xiě)出自變量x的取值范圍;

2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車(chē)自駕出游,不同租賃公司的租車(chē)費(fèi)用(單位:元)與時(shí)間(單位:)之間的關(guān)系如圖所示.

根據(jù)以上信息,解答下列問(wèn)題:

1)設(shè)租車(chē)時(shí)間為時(shí),租用甲公司的車(chē)所需費(fèi)用為元,租用乙公司的車(chē)所需費(fèi)用為元,分別求出,關(guān)于的函數(shù)解析式;

2)請(qǐng)你幫助小明計(jì)算并選擇哪個(gè)出游方案合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10,AE=15(i=1是指坡面的鉛直高度BH與水平長(zhǎng)度AH的比).

(1)求點(diǎn)B距水平面AE的高度BH;

(2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),OD⊥BC,OE⊥AC,垂足分別為D,E.

(1)當(dāng)BC=1時(shí),求線段OD的長(zhǎng);

(2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出并求其長(zhǎng)度,如果不存在,請(qǐng)說(shuō)明理由;

(3)設(shè)BD=x,△DOE的面積為y,求y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:

作出△繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2

(2)請(qǐng)直接寫(xiě)出以A1、B2C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .(寫(xiě)出一個(gè)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案