【題目】已知:a,c是-27的立方根.

(1)b _______,c _______;

(2)化簡(jiǎn)a,并求a+b-c的平方根;

(3)若關(guān)于的不等式組無解,求的取值范圍.

【答案】(1)5,-3;(2)1;;(3) .

【解析】(1)根據(jù)算術(shù)平方根和立方根的意義求解即可;

(2)先根據(jù)絕對(duì)值的意義把的絕對(duì)值符號(hào)去掉,然后合并同類二次根式即可求出a的值;根據(jù)平方根的意義求a+b-c的平方根即可;

(3)a=1,b=5,c=-3代入不等式組,得 ,然后根據(jù)解集的確定方法即可求出的取值范圍.

b 5 ,c -3 ;

a,

;

⑶ 將a=1,b=5,c=-3代入不等式組,得 ,

∵ 不等式組無解,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,CEAB于點(diǎn)E,DFAB于點(diǎn)FCE平分∠ACB,DF平分∠BDE

求證:ACED.

證明:∵CEABE,DFABF(已知)

DF   (垂直于同一條直線的兩直線平行)

∴∠BDF=      

FDE=   (兩直線平行,內(nèi)錯(cuò)角相等)

CE平分∠ACB,DF平分∠BDE(已知)

∴∠ACE=ECB,EDF=BDF(角平分線的定義)

∴∠ACE=   (等量代換)

ACED   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到社會(huì)的廣泛關(guān)注,某校政教處對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有______名;

(2)請(qǐng)補(bǔ)全折線統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在解決問題:已知a=,求2a28a+1的值,他是這樣分析與解的:

a===2

a2=

∴(a﹣2)2=3,a2﹣4a+4=3

∴a2﹣4a=﹣1

∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1

請(qǐng)你根據(jù)小明的分析過程,解決如下問題:

(1)化簡(jiǎn)+++…+

(2)若a=,求4a28a+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.

(1)求OA、OB的長(zhǎng).
(2)若點(diǎn)E為x軸正半軸上的點(diǎn),且SAOE= ,求經(jīng)過D、E兩點(diǎn)的直線解析式及經(jīng)過點(diǎn)D的反比例函數(shù)的解析式,并判斷△AOE與△AOD是否相似.
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在2×2的正方形網(wǎng)格中有9個(gè)格點(diǎn),已經(jīng)取定點(diǎn)A,B,C,在余下的6個(gè)點(diǎn)中任取一點(diǎn)P,滿足△ABP與△ABC相似的概率是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將n個(gè)邊長(zhǎng)都為2的正方形按如圖所示擺放,點(diǎn)A1 , A2 , …An分別是正方形的中心,則這n個(gè)正方形重疊部分的面積之和是(

A.n
B.n﹣1
C.4(n﹣1)
D.4n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC與△DEF中,給出以下六個(gè)條件:

(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.

以其中三個(gè)作為已知條件,不能判斷△ABC與△DEF全等的是( 。

A. (1)(5)(2) B. (1)(2)(3) C. (2)(3)(4) D. (4)(6)(1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC分別在x軸,y軸上,函數(shù)y=的圖象過點(diǎn)P4,3)和矩形的頂點(diǎn)Bm,n)(0m4).

1)求k的值;

2)連接PA,PB,若△ABP的面積為6,求直線BP的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案