【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,則求出它的度數(shù).
【答案】(1)、證明過程見解析;(2)、∠QMC=60°;(3)、∠QMC=120°.
【解析】
試題分析:(1)、根據(jù)等邊三角形可得∠ABQ=∠CAP,AB=CA,根據(jù)速度相同可得AP=BQ,從而得出三角形全等;(2)、根據(jù)△ABQ≌△CAP得出∠BAQ=∠ACP,然后根據(jù)∠QMC=∠BAQ+∠MACC=∠BAC得出答案;(3)、根據(jù)△ABQ≌△CAP得出∠BAQ=∠ACP,然后根據(jù)∠QMC=∠ACP+∠APM=180°-∠PAC得出答案.
試題解析:(1)、∵△ABC是等邊三角形 ∴∠ABQ=∠CAP,AB=CA, 又∵點P、Q運動速度相同,
∴AP=BQ, 在△ABQ與△CAP中,AB=AC,∠ABQ=∠CAP,AP=BQ ∴△ABQ≌△CAP(SAS);
(2)、點P、Q在運動的過程中,∠QMC不變.
理由:∵△ABQ≌△CAP, ∴∠BAQ=∠ACP, ∵∠QMC=∠ACP+∠MAC, ∴∠QMC=∠BAQ+∠MAC=∠BAC=60°
(3)、點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動時,∠QMC不變.
理由:∵△ABQ≌△CAP, ∴∠BAQ=∠ACP, ∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°
科目:初中數(shù)學 來源: 題型:
【題目】【閱讀理解】對于任意正實數(shù)a、b,
∵(-)2≥0,∴a-2+b≥0,
∴a+b≥2,(只有當a=b時,a+b等于2).
【獲得結(jié)論】在a+b≥2(a、b均為正實數(shù))中,若ab為定值p,
則a+b≥2,只有當a=b時,a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問題:(1)若>0,只有當= 時,m+有最小值 .
【探索應用】(2)已知點Q(-3,-4)是雙曲線y=上一點,過Q作QA⊥x軸于點A,作QB⊥y軸于點B.點P為雙曲線y=(x>0)上任意一點,連接PA,PB,求四邊形AQBP的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象相交于A(2,1),B兩點.
(1)求出反比例函數(shù)與一次函數(shù)的表達式;
(2)請直接寫出B點的坐標,并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a<﹣1,點(a﹣1,y1),(a,y2),(a+1,y3)都在函數(shù)y=﹣x2的圖象上,則( )
A.y1<y2<y3
B.y1<y3<y2
C.y3<y2<y1
D.y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com