已知拋物線的頂點(diǎn)是(-1,-2),且過(guò)點(diǎn)(1,10).求此拋物線對(duì)應(yīng)的二次函數(shù)關(guān)系式
y=3x2+6x+1
y=3x2+6x+1
分析:由于已知拋物線的頂點(diǎn)坐標(biāo),則可設(shè)拋物線的解析式為y=a(x+1)2-2,然后把(1,10)代入求出a即可.
解答:解:設(shè)拋物線的解析式為y=a(x+1)2-2,
把(1,10)代入得4a-2=10,解得a=3,
所以拋物線的解析式為y=3(x+1)2-2=3x2+6x+1.
故答案為y=3x2+6x+1.
點(diǎn)評(píng):本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來(lái)求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來(lái)求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)關(guān)系式.
(1)已知拋物線的頂點(diǎn)是(-1,-2),且過(guò)點(diǎn)(1,10);
(2)已知拋物線過(guò)三點(diǎn):(0,-2),(1,0),(2,3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知拋物線的頂點(diǎn)是M(1,16),且與x軸交于A,B兩點(diǎn)(A在B的左邊),若AB=8,求該拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)是C(0,a)(a>0,a為常數(shù)),并經(jīng)過(guò)點(diǎn)(2a,2a),點(diǎn)D(0,2a)為一定點(diǎn).
(1)求含有常數(shù)a的拋物線的解析式;
(2)設(shè)點(diǎn)P是拋物線上任意一點(diǎn),過(guò)P作PH丄x軸.垂足是H,求證:PD=PH;
(3)設(shè)過(guò)原點(diǎn)O的直線l與拋物線在笫一象限相交于A、B兩點(diǎn),若DA=2DB.且S△ABD=4
2
.求a的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,求出二次函數(shù)的關(guān)系式.已知拋物線的頂點(diǎn)是(-1,-2),且過(guò)點(diǎn)(1,10).

查看答案和解析>>

同步練習(xí)冊(cè)答案