【題目】數(shù)學(xué)實(shí)驗(yàn)室:

點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b|.

利用數(shù)形結(jié)合思想回答下列問(wèn)題:

(1)數(shù)軸上表示25的兩點(diǎn)之間的距離是_________,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;

(2)數(shù)軸上若點(diǎn)A表示的數(shù)是x點(diǎn)B表示的數(shù)是-2,則點(diǎn)AB之間的距離是 ,若AB=2,那么x ;

(3)當(dāng)x 時(shí),代數(shù)式;

(4)若點(diǎn)A表示的數(shù)-1,點(diǎn)B與點(diǎn)A的距離是10,且點(diǎn)B在點(diǎn)A的右側(cè),動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,PQ=1?(請(qǐng)寫(xiě)出必要的求解過(guò)程)

【答案】(1)3,4;(2)x+2,0-4;(3)-32;(4)4.55.5.

【解析】

1)根據(jù)數(shù)軸上兩點(diǎn)間的距離的求解方法列式計(jì)算即可得解;
2)根據(jù)數(shù)軸上兩點(diǎn)間的距離等于這兩個(gè)數(shù)的差的絕對(duì)值列式即可;

3)根據(jù)代數(shù)式x+2│+│x-1│=5列出x的取值范圍,即可求出x的值;

(4)點(diǎn)P和點(diǎn)Q作追擊運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,根據(jù)路程的差為10列方程求解.

(1)|25|3,

|1(3)|4;

(2)|x(2)||x2|;當(dāng)AB=2,則|x2|=2,x=0x=-4;

(3)x+2│+│x-1│=5,

x在﹣2的左邊或1的右邊,

設(shè)x到﹣21的距離為a,

2a+3=5,

解得:a=1.

x=-3x=2.

(4)設(shè)運(yùn)動(dòng)時(shí)間為t,根據(jù)路程的差為10,

3tt=93tt=11

解得:t=4.55.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線(xiàn)段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè) 動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在直線(xiàn)CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

(3) 在線(xiàn)段PB上有一點(diǎn)M,且PM=5,當(dāng)P運(yùn)動(dòng) 秒時(shí),四邊形OAMP的周長(zhǎng)最小, 并畫(huà)圖標(biāo)出點(diǎn)M的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE是∠BAC的平分線(xiàn),∠ABC的平分線(xiàn)BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.
(1)求證:AE為⊙O的切線(xiàn);
(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;
(3)在(2)的條件下,求線(xiàn)段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)AB、C在數(shù)軸上對(duì)應(yīng)的數(shù)為,多項(xiàng)式是關(guān)于字母x,y的五次多項(xiàng)式.

(1)則a=__b=__,=__;并將這三數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)A、BC表示出來(lái);

(2)已知螞蟻從點(diǎn)出發(fā),以每秒2cm的速度爬行,先到B點(diǎn),再到C點(diǎn),一共需要多少秒?

(3)數(shù)軸上在B點(diǎn)右邊有一點(diǎn)DA、B兩點(diǎn)的距離和為11,求點(diǎn)D的數(shù)軸上所對(duì)應(yīng)的數(shù);(直接寫(xiě)出結(jié)果)

(友情提示:M、N之間距離記作|MN|,點(diǎn)MN在數(shù)軸上對(duì)應(yīng)的數(shù)分別為m、n,則)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖是用棋子擺成的“T”字圖案.從圖案中可以看出,第一個(gè)“T”字圖案需要5枚棋子,第二個(gè)“T”字圖案需要8枚棋子,第三個(gè)“T”字圖案需要11枚棋子

(1)照此規(guī)律,擺成第八個(gè)圖案需要幾枚棋子?

(2)擺成第n個(gè)圖案需要幾枚棋子?

(3)擺成第2008個(gè)圖案需要幾枚棋子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A1A2=1,OA1A2=90°,A1OA2=30°,以斜邊OA2為直角邊作直角三角形,使得∠A2OA3=30°,依次以前一個(gè)直角三角形的斜邊為直角邊一直作含30°角的直角三角形,則RtA2014OA2015的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AOx軸上,AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,A1O=2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰三角形A2OB2,A2O=2A1O……依此規(guī)律得到等腰直角三角形A2 017OB2 017則點(diǎn)B2 017的坐標(biāo)( 。

A. (22 017,-22 017 B. (22 016,-22 016 C. (22 017,22 017 D. (22 016,22 016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年8月,我國(guó)空軍八一飛行表演隊(duì)赴俄羅斯國(guó)際軍事技術(shù)論壇上進(jìn)行飛行表演,其中一架飛機(jī)起飛后的高度變化如下表:

(1) 如果飛機(jī)每上升或下降1千米需消耗2升燃油,那么這架飛機(jī)在這4個(gè)動(dòng)作表演過(guò)程中,一共消耗了多少升燃油?

(2) 如果飛機(jī)做特技表演時(shí),有4個(gè)規(guī)定動(dòng)作,起飛后高度變化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飛機(jī)最終比起飛點(diǎn)高出1千米,問(wèn)第4個(gè)動(dòng)作是上升還是下降,上升或下降多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】麒麟?yún)^(qū)第七中學(xué)現(xiàn)有一塊空地ABCD如圖所示,現(xiàn)計(jì)劃在空地上種草皮,經(jīng)測(cè)量,∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m

1)求出空地ABCD的面積?

2)若每種植1平方米草皮需要300元,問(wèn)總共需投入多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案