已知二次函數(shù)y=x2﹣(m2﹣2)x﹣2m的圖象與x軸交于點(diǎn)A(x1,0)和點(diǎn)B(x2,0),x1<x2,與y軸交于點(diǎn)C,且滿足.
(1)求這個(gè)二次函數(shù)的解析式;
(2)探究:在直線y=x+3上是否存在一點(diǎn)P,使四邊形PACB為平行四邊形?如果有,求出點(diǎn)P的坐標(biāo);如果沒(méi)有,請(qǐng)說(shuō)明理由.
考點(diǎn):二次函數(shù)綜合題。
分析:(1)欲求拋物線的解析式,關(guān)鍵是求得m的值.根據(jù)題中所給關(guān)系式,利用一元二次方程根與系數(shù)的關(guān)系,可以求得m的值,從而問(wèn)題得到解決.注意:解答中求得兩個(gè)m的值,需要進(jìn)行檢驗(yàn),把不符合題意的m值舍去;
(2)利用平行四邊形的性質(zhì)構(gòu)造全等三角形,根據(jù)全等關(guān)系求得P點(diǎn)的縱坐標(biāo),進(jìn)而得到P點(diǎn)的橫坐標(biāo),從而求得P點(diǎn)坐標(biāo).
解答:解:(1)∵二次函數(shù)y=x2﹣(m2﹣2)x﹣2m的圖象與x軸交于點(diǎn)A(x1,0)和點(diǎn)B(x2,0),x1<x2,
令y=0,即x2﹣(m2﹣2)x﹣2m=0 ①,則有:
x1+x2=m2﹣2,x1x2=﹣2m.
∴===,
化簡(jiǎn)得到:m2+m﹣2=0,解得m1=﹣2,m2=1.
當(dāng)m=﹣2時(shí),方程①為:x2﹣2x+4=0,其判別式△=b2﹣4ac=﹣12<0,此時(shí)拋物線與x軸沒(méi)有交點(diǎn),不符合題意,舍去;
當(dāng)m=1時(shí),方程①為:x2+x﹣2=0,其判別式△=b2﹣4ac=9>0,此時(shí)拋物線與x軸有兩個(gè)不同的交點(diǎn),符合題意.
∴m=1,
∴拋物線的解析式為y=x2+x﹣2.
(2)假設(shè)在直線y=x+3上是否存在一點(diǎn)P,使四邊形PACB為平行四邊形.[來(lái)源:Z§xx§k.Com]
如圖所示,連接PA.PB.AC.BC,過(guò)點(diǎn)P作PD⊥x軸于D點(diǎn).
∵拋物線y=x2+x﹣2與x軸交于A.B兩點(diǎn),與y軸交于C點(diǎn),
∴A(﹣2,0),B(1,0),C(0,2),∴OB=1,OC=2.
∵PACB為平行四邊形,∴PA∥BC,PA=BC,
∴∠PAD=∠CBO,∴∠APD=∠OCB.
在Rt△PAD與Rt△CBO中,
∵,
∴Rt△PAD≌Rt△CBO,
∴PD=OC=2,即yP=2,
∴直線解析式為y=x+3,
∴xP=﹣1,
∴P(﹣1,2).
所以在直線y=x+3上存在一點(diǎn)P,使四邊形PACB為平行四邊形,P點(diǎn)坐標(biāo)為(﹣1,2).
點(diǎn)評(píng):本題是代數(shù)幾何綜合題,考查了二次函數(shù)的圖象與性質(zhì)、拋物線與x軸的交點(diǎn)、一元二次方程根的解法及根與系數(shù)關(guān)系、一次函數(shù)、平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)等方面的知識(shí),涉及的考點(diǎn)較多,有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||
B、-
| ||
C、
| ||
D、-
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com