精英家教網 > 初中數學 > 題目詳情
(2013•郴州)如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O為原點,OC、OA所在直線為軸建立坐標系.拋物線頂點為A,且經過點C.點P在線段AO上由A向點O運動,點Q在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.
(1)求拋物線的解析式;
(2)點E′是E關于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當t為何值時,PB∥OD?
分析:(1)根據頂點式將A,C代入解析式求出a的值,進而得出二次函數解析式;
(2)利用菱形的性質得出AO與EE′互相垂直平分,利用E點縱坐標得出x的值,進而得出BC,EO直線解析式,再利用兩直線交點坐標求法得出Q點坐標,即可得出答案;
(3)首先得出△APB∽△QDO,進而得出
AP
DQ
=
AB
QO
,求出m的值,進而得出答案.
解答:解:(1)∵A(0,2)為拋物線的頂點,
∴設y=ax2+2,
∵點C(3,0),在拋物線上,
∴9a+2=0,
解得:a=-
2
9
,
∴拋物線為;y=-
2
9
x2+2;

(2)如果四邊形OEAE′是菱形,則AO與EE′互相垂直平分,
∴EE′經過AO的中點,
∴點E縱坐標為1,代入拋物線解析式得:
1=-
2
9
x2+2,
解得:x=±
3
2
2

∵點E在第一象限,
∴點E為(
3
2
2
,1),
設直線BC的解析式為y=kx+b,把B(1,2),C(3,0),代入得:
k+b=2
3k+b=0
,
解得:
k=-1
b=3
,
∴BC的解析式為:y=-x+3,
將E點代入y=ax,可得出EO的解析式為:y=
2
3
x,
y=
2
3
x
y=-x+3
,
得:
x=
27-9
2
7
y=
9
2
-6
7

∴Q點坐標為:(
27-9
2
7
,0),
∴當Q點坐標為(
27-9
2
7
,0)時,四邊形OEAE′是菱形;

(3)法一:設t為m秒時,PB∥DO,又QD∥y軸,則有∠APB=∠AOE=∠ODQ,
又∵∠BAP=∠DQO,則有△APB∽△QDO,
AB
QO
=
AP
DQ
,
由題意得:AB=1,AP=2m,QO=3-3m,
又∵點D在直線y=-x+3上,∴DQ=3m,
因此:
1
3-3m
=
2m
3m
,解得:m=
1
2
,
經檢驗:m=
1
2
是原分式方程的解,
∴當t=
1
2
秒時,PB∥OD.
法二:作BH⊥OC于H,則BH=AO=2,OH=AB=1,HC=OC-OH=2,
∴BH=HC,∴∠BCH=∠CBH=45°,
易知DQ=CQ,
設t為m秒時PB∥OE,則△ABP∽△QOD,
AP
DQ
=
AB
QO
,易知AP=2m,DQ=CQ=3m,QO=3-3m,
2m
3m
=
1
3-3m
,
解得m=
1
2
,經檢驗m=
1
2
是方程的解,
∴當t為
1
2
秒時,PB∥OD.
點評:此題主要考查了菱形的判定與性質以及頂點式求二次函數解析式以及相似三角形的判定與性質等知識,根據數形結合得出△APB∽△QDO是解題關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•郴州)如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點.將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠ADB′等于( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,AB是⊙O的直徑,點C是圓上一點,∠BAC=70°,則∠OCB=
20
20
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•郴州)如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數式表示EM、FN,并探究EM、FN、BH之間的數量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數關系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

同步練習冊答案