【題目】已知一次函數(shù)的圖像與反比例函數(shù)的圖像交于點,與軸交于點,若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點為軸上一點,是等腰三角形,求點的坐標(biāo).
【答案】(1)反比例函數(shù)的表達(dá)式為,直線的表達(dá)式為;(2)的坐標(biāo)為或或或.
【解析】
(1) 過點作軸于,根據(jù)和求出AD的長度,再利用和勾股定理得到BD的長度,進而得到答案;
(2)根據(jù)得到的是等腰三角形分情況、、討論即可得到答案;
解:(1)如圖,過點作軸于,
∵,
∴,
∵,
∴,
∴,
∵,
∴,
在中,(勾股定理),
∴,
∴,
將點坐標(biāo)代入反比例函數(shù)中得,,
∴反比例函數(shù)的表達(dá)式為,
將點,代入中,
得:,
解得:
∴直線的表達(dá)式為
(2)由(1)知,,
∵是等腰三角形,
∴①當(dāng)時,
∴,
∴或,
②當(dāng)時,如圖:
由(1)知,,
易知,點與點關(guān)于對稱,
∴,
∴,
∴,
③當(dāng)時,設(shè),
∵,,
∴根據(jù)兩點間的距離公式得到:,,
∴
∴,
∴,
即:滿足條件的點的坐標(biāo)為或或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個公共點.
(1)求b的取值范圍;
(2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時,函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;
(3)若在自變量x的值滿足b≤x≤b+3的情況下,對應(yīng)函數(shù)y的最小值為,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,過點A作AH⊥BC,分別交BD,BC于點E,H,F為ED的中點,∠BAF=120°,則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點,,點在以為圓心,為半徑的⊙上,是的中點,若長的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學(xué)家陳景潤哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)都表示為兩個素數(shù)的和”,如10=3+7.
(1)從7,11,13,17這4個素數(shù)中隨機抽取一個,則抽到的數(shù)是11的概率是_____;
(2)從7,11,13,17這4個素數(shù)中隨機抽取1個數(shù),再從余下的3個數(shù)中隨機抽取1個數(shù),用畫樹狀圖或列表的方法,求抽到的兩個素數(shù)之和等于24的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,∠B=30°,以點O為圓心,OA為半徑作弧交AB于點C,交OB于點D,若OA=4,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠C=30°,過D作DE⊥BC于點E,延長CB至點F,使BF=CE,連接AF.若AF=4,CF=10,則ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線與y軸交于點B,與x軸交于點A,C(點A在點C的左側(cè)),A(-1,0),C(4,0),連接AB,BC,點為y軸負(fù)半軸上的一點,連接AG并延長交拋物線于點E,點D為線段AE上的一個動點,過點D作y軸的平行線交拋物線于點F,與線段BC交于點N.
(1)求拋物線的表達(dá)式及直線BC的表達(dá)式;
(2)在點D運動的過程中,當(dāng)FN的值最大時,在線段BC上是否存在一點H,使得FNH與ABC相似,如果存在,求出此時H點的坐標(biāo);
(3)當(dāng)DF=4時,連接DC,四邊形ABCD先向上平移一定單位長度后,使點D落在x軸上,然后沿x軸向左平移n(1n4)個單位長度,用含n的表達(dá)式表示平移后的四邊形與原四邊形重疊部分的面積S(直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com