【題目】如圖、在平行四邊形ABCD中,E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),則下列條件中不能判定四邊形AECF是平行四邊形的是( )

A.BD=DFB.AFBD,

C.D.

【答案】D

【解析】

連接ACBD相交于O,根據(jù)平行四邊形的對(duì)角線(xiàn)互相平分可得OA=OC,OB=OD,再根據(jù)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形,只要證明得到OE=OF即可,然后根據(jù)各選項(xiàng)的條件分析判斷即可得解.

如圖,連接ACBD相交于O,

ABCD中,OA=OC,OB=OD,

要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可;

A、若BE=DF,則OB-BE=OD-DF,即OE=OF,故本選項(xiàng)錯(cuò)誤;

B、若AFBD,CEBD,則可以利用角角邊證明ADFCBE全等,從而得到DF=BE,然后同A,故本選項(xiàng)錯(cuò)誤;

C、∠BAE=DCF能夠利用角角邊證明ABECDF全等,從而得到DF=BE,然后同A,故本選項(xiàng)錯(cuò)誤;

D、AF=CE無(wú)法證明得到OE=OF,故本選項(xiàng)正確.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的周長(zhǎng)是48cm, AEBC,垂足為E,AFCD,垂足為F,∠EAF2C

1)求∠C的度數(shù);

2)已知DF的長(zhǎng)是關(guān)于x的方程x25xa0的一個(gè)根,求該方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的一條弦,點(diǎn)O在線(xiàn)段AC上,AC=AB,OC=3,sinA=.求:(1)O的半徑長(zhǎng);(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽(yáng)光線(xiàn)與水平面所成的角為32.3°,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽(yáng)光線(xiàn)與水平面所成的角為55.7°,女生樓在男生樓墻面上的影高為DA.已知CD=42m.求樓間距AB的長(zhǎng)度為多少米?(參考數(shù)據(jù):sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=24,AC=18DAC上一點(diǎn),AD=6,在AB上取一點(diǎn)E,使A、DE三點(diǎn)組成的三角形與△ABC相似,則AE的長(zhǎng)為( )

A.8B.C.8D.89

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E,F分別是邊ABCD上的點(diǎn),AECF,連結(jié)EFBF,EF與對(duì)角線(xiàn)AC交于點(diǎn)O,且BEBF,∠BEF2BAC

1)求證:OEOF;(2)若BC3,求AB的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3

1)將△ABC向右平移6個(gè)單位至△A1B1C1,再將△A1B1C1繞點(diǎn)E5,1)逆時(shí)針旋轉(zhuǎn)90°至△A2B2C2,請(qǐng)按要求畫(huà)出圖形;

2)在(1)的變換過(guò)程中,直接寫(xiě)出點(diǎn)C的運(yùn)動(dòng)路徑長(zhǎng)   

3)△A2B2C2可看成△ABC繞某點(diǎn)P旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司推銷(xiāo)一種產(chǎn)品,公司付給推銷(xiāo)員的月報(bào)酬有兩種方案如圖所示:方案一所示圖形是頂點(diǎn)在原點(diǎn)的拋物線(xiàn)的一部分,方案二所示圖形是射線(xiàn).其中(件)表示推銷(xiāo)員推銷(xiāo)產(chǎn)品的數(shù)量,(元)表示付給推銷(xiāo)員的月報(bào)酬.

1)分別求兩種方案中關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)推銷(xiāo)員推銷(xiāo)產(chǎn)品的數(shù)量達(dá)到多少件時(shí),兩種方案月報(bào)酬差額將達(dá)到元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為原點(diǎn),拋物線(xiàn)經(jīng)過(guò)點(diǎn),對(duì)稱(chēng)軸為直線(xiàn),點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為點(diǎn).過(guò)點(diǎn)作直線(xiàn)軸,交軸于點(diǎn).

(Ⅰ)求該拋物線(xiàn)的解析式及對(duì)稱(chēng)軸;

(Ⅱ)點(diǎn)軸上,當(dāng)的值最小時(shí),求點(diǎn)的坐標(biāo);

(Ⅲ)拋物線(xiàn)上是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案