【題目】已知,直線AB∥DC,點P為平面上一點,連接AP與CP.
(1)如圖1,點P在直線AB、CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC.
(2)如圖2,點P在直線AB、CD之間,∠BAP與∠DCP的角平分線相交于點K,寫出∠AKC與∠APC之間的數量關系,并說明理由.
(3)如圖3,點P落在CD外,∠BAP與∠DCP的角平分線相交于點K,∠AKC與∠APC有何數量關系?并說明理由.
【答案】(1)80°;(2)見解析;(3)見解析
【解析】整體分析:
分別過點P,K作AB的平行線,利用平行線的性質和角平分線的定義即可求解.
解:(1)如圖1,過P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如圖2,過K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
過P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP與∠DCP的角平分線相交于點K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC.
理由:如圖3,過K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
過P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAP與∠DCP的角平分線相交于點K,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
科目:初中數學 來源: 題型:
【題目】一組數據共50個,分為6組,第一組的頻數為5,第二組的頻數為7,第三組的頻數為8,第四組的頻數為10,第五組的頻率是0.2,則第六組的頻數是( )
A. 10 B. 0.2 C. 40 D. 8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)有一條紙帶如圖甲所示,怎樣檢驗紙帶的兩條邊線是否平行?說明你的方法和理由.
(2)如圖乙,將一條上下兩邊互相平行的紙帶折疊,設∠1為x度,請用x的代數式表示∠α的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一.為了增強居民的節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費的辦法收費.即一個月用水10噸以內(包括10噸)的用戶,每噸收水費a元;一個月用水超過10噸的用戶,10噸水仍按每噸a元收費,超過10噸的部分,按每噸b元(b>a)收費.設一戶居民月用水x噸,應收水費y元,y與x之間的函數關系如圖
(1)求a的值,某戶居民上月用水8噸,應收水費多少元;
(2)求b的值,并寫出當x>10時,y與x之間的函數關系式;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=﹣x+n與x軸、y軸分別交于B、C兩點,拋物線y=ax2+bx+3(a≠0)過C、B兩點,交x軸于另一點A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點P是射線CB上一點,過點P作x軸的垂線,垂足為H,交拋物線于Q,設P點橫坐標為t,線段PQ的長為d,求出d與t之間的函數關系式,并寫出相應的自變量t的取值范圍;
(3)在(2)的條件下,當點P在線段BC上時,設PH=e,已知d,e是以y為未知數的一元二次方程:y2-(m+3)y+(5m2-2m+13)=0 (m為常數)的兩個實數根,點M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com