如圖,在平面直角坐標系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長是關(guān)于x的一元二次方程的兩個根,且OA>OB.

(1)求OA、OB的長;
(2)若點E為x軸上的點,且S△AOE,求經(jīng)過D、E兩點的直線解析式,并判斷△AOE與△AOD是否相似;
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,直接寫出F點的坐標,若不存在,請說明理由.

(1)OA=4,OB=3;(2),相似;
(3)(-3,0),(3,8),(,),(,

解析試題分析:(1)求出一元二次方程的兩個根,再結(jié)合OA>OB即可得到結(jié)果;
(2)先根據(jù)三角形的面積求出點E的坐標,并根據(jù)平行四邊形的對邊相等的性質(zhì)求出點D的坐標,然后利用待定系數(shù)法求得直線的解析式;分別求出兩三角形夾直角的兩對應(yīng)邊的比,如果相等,則兩三角形相似,否則不相似;
(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對角線的情況分別進行求解計算.
(1)解一元二次方程,
∵OA>OB
∴OA=4,OB=3;
(2)設(shè)E(x,0),由題意得

解得
∴E(,0)或(,0),
∵四邊形ABCD是平行四邊形,
∴點D的坐標是(6,4)
設(shè)經(jīng)過D、E兩點的直線的解析式為
若圖象過點(,0),(6,4)
,解得
此時函數(shù)解析式為
若圖象過點(,0),(6,4)
,解得
此時函數(shù)解析式為
在△AOE與△DAO中,
,

又∵∠AOE=∠OAD=90°
∴△AOE∽△DAO;
(3)∵OB=OC=3,
∴AO平分∠BAC,
①AC、AF是鄰邊,點F在射線AB上時,AF=AC=5,
所以點F與B重合,
即F(-3,0);
②AC、AF是鄰邊,點F在射線BA上時,M應(yīng)在直線AD上,且FC垂直平分AM,
點F(3,8);
③AC是對角線時,作AC垂直平分線L,AC解析式為
則直線L過(,2),且k值為(平面內(nèi)互相垂直的兩條直線k值乘積為-1),
∴L解析式為,聯(lián)立直線L與直線AB求交點,
∴F();
④AF是對角線時,過C做AB垂線,垂足為N,根據(jù)等積法求出,勾股定理得
做A關(guān)于N的對稱點即為F,
過F做y軸垂線,垂足為G,
∴F(,);
綜上所述,滿足條件的點有四個:(-3,0),(3,8),(,),(,).
考點:本題考查了解一元二次方程,相似三角形的性質(zhì)與判定,待定系數(shù)法求函數(shù)解析式
點評:解答本題的關(guān)鍵是要注意(3)中求點F的坐標要根據(jù)AC與AF是鄰邊與對角線的情況進行討論,不要漏解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案