【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過CCDADD,交AB的延長線于E

(1)求證:直線CD⊙O的切線;

(2)當(dāng)AB2BE,且CE時(shí),求AD的長.

【答案】(1)證明見解析;(2)1.5.

【解析】

1)連接OC,推出∠DAC=CAB,∠OAC=OCA,求出∠DAC=OCA,得出OCAD,推出OCDC,根據(jù)切線的判定判斷即可;
2)根據(jù)題意利用等腰三角形的性質(zhì)得到OCOE,再結(jié)合勾股定理求出OC1OE2,再得到RtOCE是含30度角的直角三角形,再利用含30度角的直角三角形的性質(zhì),即可求出答案.

(1)證明:連接OC,如圖所示,

OAOC,

∴∠OAC=∠OCA,

AC平分∠BAD

∴∠CAD=∠OCA,

∴∠OAC=∠CAD,

OCAD,

ADDE,

OCDE

OC為圓O的半徑,

CD為圓O的切線;

(2)解:∵AB2BE,且AB2OA2OB,

OAOBBEOC,

OCOE,

RtOCE中,CE,

OC1,OE2,

∵在RtOCE中,2OC= OE,

∴∠CEO=30°

AE3,

ADAE1.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,點(diǎn)B,D在⊙O上,點(diǎn)E在⊙O外,∠EAB=D=30°.

(1)C的度數(shù)為   ;

(2)求證:AE是⊙O的切線;

(3)當(dāng)AB=3時(shí),求圖中陰影部分的面積(結(jié)果保留根號和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AC是對角線,AB6cmBC8cm.點(diǎn)P從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動,速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動,速度為2cm/s,過點(diǎn)QQMABAC于點(diǎn)M,連接PM,設(shè)運(yùn)動時(shí)間為ts)(0t4).解答下列問題:

1)當(dāng)t為何值時(shí),∠CPM90°;

2)是否存在某一時(shí)刻t,使S四邊形MQCP?若存在,求出t的值;若不存在,請說明理由;

3)當(dāng)t為何值時(shí),點(diǎn)P在∠CAD的角平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)是常數(shù),)的自變量與函數(shù)值的部分對應(yīng)值如下表:

0

1

2

且當(dāng)時(shí),與其對應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn),交軸于兩點(diǎn),點(diǎn)是第一象限內(nèi)拋物線上一動點(diǎn).

1)直接寫出拋物線的解析式;

2)如圖1,已知直線的解析式為,過點(diǎn)作直線的垂線,垂足為,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+c中的yx的部分對應(yīng)值如下表:

x

1

0

1

3

y

3

1

3

1

下列結(jié)論中:拋物線的開口向下;其圖象的對稱軸為x1;當(dāng)x1時(shí),函數(shù)值yx的增大而增大;方程ax2+bx+c0有一個(gè)根大于4ax12+bx1ax22+bx2,且x1x2,則x1+x23,其中正確的結(jié)論有(  )

A.①②③B.①②③④⑤C.①③⑤D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價(jià)300元.若一次性購買不超過10件時(shí),售價(jià)不變;若一次性購買超過10件時(shí),每多買1件,所買的每件服裝的售價(jià)均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時(shí),該網(wǎng)店從中獲利y元.

(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)顧客一次性購買多少件時(shí),該網(wǎng)店從中獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,弦CDAB于點(diǎn)E,OFAC于點(diǎn)F

(1)請?zhí)剿?/span>OFBC的關(guān)系并說明理由;

(2)若∠D30°,BC1時(shí),求圓中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.

(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2,求m的值.

查看答案和解析>>

同步練習(xí)冊答案