【題目】已知二次函數(shù),與軸的交點(diǎn)為,與軸交于、兩點(diǎn).(點(diǎn)在點(diǎn)的右側(cè))

1)當(dāng),求的值;

2)點(diǎn)在二次函數(shù)的圖像上,設(shè)直線軸交于點(diǎn),求的值.

【答案】1,;(2

【解析】

1)解一元二次方程即可;

2)先求出點(diǎn)B、P、M的坐標(biāo),根據(jù)坐標(biāo)求出直線MP的解析式,得到點(diǎn)C的坐標(biāo).

1)由題意得:,

∴(x-5)(x+1=0,

,;

2)由(1)可得x軸的交點(diǎn)B5,0),

∵二次函數(shù),與軸的交點(diǎn)為,

P(0-5),

∵點(diǎn)在二次函數(shù)的圖像上,

m=,

M(6,7),

設(shè)直線MP的解析式為y=kx+b

,解得

∴直線MP的解析式為y=2x-5,

當(dāng)y=0時(shí),x=,

∴直線軸交于點(diǎn)的坐標(biāo)是(,0),

過(guò)點(diǎn)MMHx軸,則H6,0),

MH=7HC=6-=,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-3,2)、B(0,4) C(0,2)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(04) ,畫(huà)出平移后對(duì)應(yīng)的△A2B2C2

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);

(3)x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD的邊長(zhǎng)是4,∠DAB=60,點(diǎn)M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+c的對(duì)稱(chēng)軸是直線x=﹣1,則下列結(jié)論正確的是(  )

A.abc0B.2ab0C.b24ac0D.a+b+c0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱(chēng)點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園劃船項(xiàng)目收費(fèi)標(biāo)準(zhǔn)如下:某班18名同學(xué)一起去該公園劃船,若每人劃船的時(shí)間均為1小時(shí),則租船的總費(fèi)用最低為_____元.

船型

兩人船(限乘兩

人)

四人船(限乘四

人)

六人船(限乘六

人)

八人船(限乘八

人)

每船租金(元/小時(shí))

50

80

100

120

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上一點(diǎn),∠CAB30°,D是直徑AB上一動(dòng)點(diǎn),連接CD并過(guò)點(diǎn)DCD的垂線,與圓O的其中一個(gè)交點(diǎn)記為點(diǎn)E(點(diǎn)E位于直線CD上方或左側(cè)),連接EC.已知AB6cm,設(shè)A、D兩點(diǎn)間的距離為xcm,C、D兩點(diǎn)間的距離為y1cmE、C兩點(diǎn)間的距離為y2cm,小雪根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小雪的探究過(guò)程:

x/cm

0

1

2

3

4

5

6

y1/cm

5.2

4.4

3.6

3.0

2.7

2.7

   

y2/cm

5.2

4.6

4.2

   

4.8

5.6

6.0

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、面圖、測(cè)量,分別得到了y1y2x的幾組對(duì)應(yīng)值,請(qǐng)將表格補(bǔ)充完整:(保留一位小數(shù))

2)在同一平面直角坐標(biāo)系xOy中,y2的圖象如圖所示,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(xy1),(x,y2),并畫(huà)出函數(shù)y1的圖象;

3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)∠ECD60°時(shí),AD的長(zhǎng)度約為   cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)統(tǒng)計(jì)了每個(gè)營(yíng)業(yè)員在某月的銷(xiāo)售額,繪制了如下統(tǒng)計(jì)圖.

解答下列問(wèn)題:

1)設(shè)營(yíng)業(yè)員的月銷(xiāo)售額為x(單位:萬(wàn)元).商場(chǎng)規(guī)定:當(dāng)x15時(shí)為不稱(chēng)職,當(dāng)15≤x20時(shí)為基本稱(chēng)職,當(dāng)20≤x25時(shí)為稱(chēng)職,當(dāng)x≥25時(shí)為優(yōu)秀.試求出基本稱(chēng)職、稱(chēng)職兩個(gè)層次營(yíng)業(yè)員人數(shù)所占百分比,并補(bǔ)全扇形圖;

2)根據(jù)(1)中規(guī)定,所有稱(chēng)職和優(yōu)秀的營(yíng)業(yè)員月銷(xiāo)售額的中位數(shù)為   ,眾數(shù)為   

3)為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,商場(chǎng)制定月銷(xiāo)售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的受到獎(jiǎng)勵(lì).如果要使稱(chēng)職和優(yōu)秀的營(yíng)業(yè)員半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元?簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,點(diǎn)分別在邊上,點(diǎn)分別在邊上,交于點(diǎn),記

1)如圖1,當(dāng)時(shí),若,求的值;

2)如圖2,當(dāng)時(shí),求的最大值和最小值;

3)若的值為3,當(dāng)重合且為直角三角形時(shí),直接寫(xiě)出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案