精英家教網 > 初中數學 > 題目詳情

如圖,在平面直角坐標系中,已知:△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0).
(1)求AO、AB所在直線的函數解析式;
(2)在△AOB內可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,請求出這個正方形四個頂瞇的坐標,并在圖中畫出這個正方形;
(3)連接OC,在線段OC上任取一點P,過P作與x軸、y軸的不行線與OA、OB分別交于M、N兩點,過M作OB邊的垂線與OB交于H;你有什么發(fā)現?請寫出來,并說明理由.

解:(1)設OA所在直線的解析式為:y=k1x,
把A(4,6)代入得4k1=6,∴
∴AO所在直線的解析式為:
設AB所在直線的解析式為:y=k2x+b,
把A(4,6)、B(6,0)代入得,
解得
∴AB所在直線的解析式為:y=-3x+18.

(2)過A作AS⊥OB于S,交CD于T.
∵DC∥EF,
∴△ADC∽△AOB,

∵A(4,6),B(6,0),
∴OB=6,AS=6,,
∴AT=DC=TS=3,故可設D(x,3),
∵D(x,3)在的圖象上,
∴x=2,故D(2,3),
可設C點的坐標為(x,3)
∵CD=3,
∴x-2=3,即x=5,
∴C(5,3),
又∵是DE、CF都垂直于OB且DE=CF,
∴E、F兩點的坐標分別為:E(2,0)、F(5,0).

(3)四邊形MHNP是矩形.
∵DC∥PM,PN∥FC


又∵四邊形EFCG是正方形,DC=CF.
∴MP=NP,而MH⊥OB,PN⊥OB,
∴四邊形MHNP是正方形.
分析:(1)因為△ABC的三個頂點的坐標分別是A(4,6)、B(0,0)、C(6,0),所以可設OA所在直線的解析式為:y=k1x,把A(4,6)代入得到關于k1的方程,解之即可;可設AB所在直線的解析式為:y=k2x+b,把A(4,6)、B(6,0)代入得到關于k2、b的方程組,解之即可;
(2)因為在△AOB內可以作一個正方形CDEF,使它的三個頂點分別落在邊AO、AB上,E、F兩個頂點落在OB上,所以可過A作AS⊥OB于S,交CD于T,利用DC∥EF,可得△ADC∽△AOB,利用相似三角形的對應邊的比等于相似比,可得,由點的坐標可知OB=6,AS=6,所以AT=DC=TS=3,故可設D(x,3),利用D(x,3)在的圖象上,求出x的值就求出了D的坐標;同樣可設C點的坐標為(x,3),因為CD=3,結合D的橫坐標可得到x-2=3,即x=5,就可求出C(5,3),根據CDEF是正方形,即可寫出E、F的坐標.
(3)因為DC∥PM∥HN,PN∥FC∥HM,可得,,MHNP是平行四邊形,利用四邊形EFCG是正方形,DC=CF,可得MP=NP,而MH⊥OB,PN⊥OB,所以四邊形MHNP是正方形.
點評:本題的解決需利用待定系數法、相似三角形的性質、正方形的判定這些知識,另外解決這類問題常用到數形結合、方程和轉化等數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案