某蓄水池的排水管道每小時(shí)排水8m3,6小時(shí)可將滿池水排空,如果增加排水管,使每小時(shí)排水量達(dá)到Q(m3),將滿池水排空所需時(shí)間為t(h).
(1)求Q與t之間的函數(shù)關(guān)系式;
(2)如果準(zhǔn)備在不超過4小時(shí)內(nèi)將滿池水排空,那么每小時(shí)排水量至少為多少?
解(1)容積為6×8=48(m3
(2)Q與t之間的關(guān)系式是Qt=72
即:Q=
72
t


(2)當(dāng)t=8時(shí),Q=
48
8
=6;
∴Q=6
∴每小時(shí)排水量至少為6米3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,△AOB的OB邊在x軸上,∠OAB=90°,OA=AB=3
2
,反比例函數(shù)y1=
k
x
A點(diǎn),一次函數(shù)y2=ax-b的圖象過A點(diǎn)且與反比例函數(shù)圖象的另一交點(diǎn)為C(-1,m),連接OC
(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)求△OAC的面積;
(3)根據(jù)圖象,直接寫出當(dāng)y1≥y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線l經(jīng)過A(1,0)且與雙曲線y=
m
x
(x>0)
在第一象限交于點(diǎn)B(2,1),過點(diǎn)P(p+1,p-1)(p>1)作x軸的平行線分別交于雙曲線y=
m
x
(x>0)
和y=-
m
x
(x<0)于M,N兩點(diǎn),
(1)求m的值及直線l的解析式;
(2)直線y=-x-3與x軸、y軸分別交于點(diǎn)C、D,點(diǎn)E在直線y=-x-3上,且點(diǎn)E在第三象限,使得
CE
ED
=2
,平移線段ED得線段HQ(點(diǎn)E與H對(duì)應(yīng),點(diǎn)D與Q對(duì)應(yīng)),使得H、Q恰好都落在y=
m
x
的圖象上,求H、Q兩點(diǎn)坐標(biāo).
(3)是否存在實(shí)數(shù)p,使得S△AMN=4S△APM?若存在,求所有滿足條件的p的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=
10
,點(diǎn)B的坐標(biāo)為(m,-2),tan∠AOC=
1
3

(1)求反比例函數(shù)、一次函數(shù)的解析式;
(2)求三角形ABO的面積;
(3)在y軸上存在一點(diǎn)P,使△PDC與△CDO相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,雙曲線y=
5
x
在第一象限的一支上有一點(diǎn)C(1,5),過點(diǎn)C的直線y=-kx+b(k>0)與x軸交于點(diǎn)A(a,0)、與y軸交于點(diǎn)B.
(1)求點(diǎn)A的橫坐標(biāo)a與k之間的函數(shù)關(guān)系式;
(2)當(dāng)該直線與雙曲線在第一象限的另一交點(diǎn)D的橫坐標(biāo)是9時(shí),求△COD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊AB在x軸的正半軸上,C(2,1),D(1,1).反比例函數(shù)y=
k
x
的圖象與邊BC交于點(diǎn)E,與邊CD交于點(diǎn)F.已知BE:CE=3:1,則DF:FC等于( 。
A.4:1B.3:1C.2:1D.1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,若反比例函數(shù)y=-
8
x
與一次函數(shù)y=mx-2的圖象都經(jīng)過點(diǎn)A(a,2)
(1)求A點(diǎn)的坐標(biāo)及一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)為B,求B點(diǎn)坐標(biāo),并利用函數(shù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD(點(diǎn)A在第一象限)與x軸的正半軸相交于M,與y的負(fù)半軸相交于N,ABx軸,反比例函數(shù)的圖象y=
k
x
過A、C兩點(diǎn),直線AC與x軸相交于點(diǎn)E、與y軸相交于點(diǎn)F.
(1)若B(-3,3),直線AC的解析式為y=ax+b.
①求a的值;
②連接OA、OC,若△OAC的面積記為S△OAC,△ABC的面積記為S△ABC,記S=S△ABC-S△OAC,問S是否存在最小值?若存在,求出其最小值;若不存在,請(qǐng)說明理由.
(2)AE與CF是否相等?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

10名評(píng)委給一位歌手打分如下:9.79,9.67,9.87,9.95,9.78,9.68,9.57,9.89,9.85,9.82.若去掉一個(gè)最高分和一個(gè)最低分,這名歌手最后得分是(  )
A.9.80B.9.79C.9.78D.9.76

查看答案和解析>>

同步練習(xí)冊答案