(2012•玉林)如圖,Rt△ABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D,E,過劣弧
DE
(不包括端點D,E)上任一點P作⊙O的切線MN與AB,BC分別交于點M,N,若⊙O的半徑為r,則Rt△MBN的周長為(  )
分析:連接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四邊形ODBE是正方形,得出BD=BE=OD=OE=r,根據(jù)切線長定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.
解答:解:連接OD、OE,
∵⊙O是Rt△ABC的內(nèi)切圓,
∴OD⊥AB,OE⊥BC,
∵∠ABC=90°,
∴∠ODB=∠DBE=∠OEB=90°,
∴四邊形ODBE是矩形,
∵OD=OE,
∴矩形ODBE是正方形,
∴BD=BE=OD=OE=r,
∵⊙O切AB于D,切BC于E,切MN于P,
∴MP=DM,NP=NE,
∴Rt△MBN的周長為:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,
故選C.
點評:本題考查的知識點是矩形的判定、正方形的判定、三角形的內(nèi)切圓和內(nèi)心、切線長定理等,主要考查運用這些性質(zhì)進行推理和計算的能力,題目比較好,難度也適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•玉林)如圖,在平面直角坐標系xOy中,矩形AOCD的頂點A的坐標是(0,4),現(xiàn)有兩動點P,Q,點P從點O出發(fā)沿線段OC(不包括端點O,C)以每秒2個單位長度的速度勻速向點C運動,點Q從點C出發(fā)沿線段CD(不包括端點C,D)以每秒1個單位長度的速度勻速向點D運動.點P,Q同時出發(fā),同時停止,設(shè)運動時間為t(秒),當t=2(秒)時,PQ=2
5

(1)求點D的坐標,并直接寫出t的取值范圍.
(2)連接AQ并延長交x軸于點E,把AE沿AD翻折交CD延長線于點F,連接EF,則△AEF的面積S是否隨t的變化而變化?若變化,求出S與t的函數(shù)關(guān)系式;若不變化,求出S的值.
(3)在(2)的條件下,t為何值時,四邊形APQF是梯形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•玉林)如圖,兩塊相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一塊繞直角頂點B逆時針旋轉(zhuǎn)到△A′BC′的位置,點C′在AC上,A′C′與AB相交于點D,則C′D=
5
2
5
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•玉林)如圖,已知點O為Rt△ABC斜邊AC上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點E,與AC相交于點D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當AE=EC時tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•玉林)如圖,在平面直角坐標系xOy中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點A的雙曲線y=
k
x
的一支在第一象限交梯形對角線OC于點D,交邊BC于點E.
(1)填空:雙曲線的另一支在第
象限,k的取值范圍是
k>0
k>0
;
(2)若點C的坐標為(2,2),當點E在什么位置時,陰影部分的面積S最?
(3)若
OD
OC
=
1
2
,S△OAC=2,求雙曲線的解析式.

查看答案和解析>>

同步練習冊答案