【題目】小麗和小明上山游玩,小麗乘纜車,小明步行,兩人相約在山頂?shù)睦|車終點(diǎn)會(huì)合.已知小明行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小麗在小明出發(fā)后1小時(shí)才乘上纜車,纜車的平均速度為190 m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個(gè)行走過程中yx的函數(shù)關(guān)系.

⑴ 小明行走的總路程是 m,他途中休息了 min

⑵ ①當(dāng)60x90時(shí),求yx的函數(shù)關(guān)系式;

②當(dāng)小麗到達(dá)纜車終點(diǎn)時(shí),小明離纜車終點(diǎn)的路程是多少?

【答案】13800, 30;(2)①y=60x-1600;②小明離纜車終點(diǎn)的路程是1200m

【解析】

1)由函數(shù)圖象可以直接得出小明行走的路程是3800米,途中休息了30分鐘;(2)①設(shè)當(dāng)60≤x≤90時(shí),yx的函數(shù)關(guān)系式為y=kx+b,由待定系數(shù)法求出其解即可;②由路程÷速度=時(shí)間就可以得出小麗到達(dá)終點(diǎn)的時(shí)間,將這個(gè)時(shí)間代入(2)的解析式就可以求出小明行走的路程.

解:(1)由函數(shù)圖象,得

小亮行走的總路程是3800米,途中休息60-30=30分鐘.

故答案為:380030;

2)①設(shè)當(dāng)60≤x≤90時(shí),yx的函數(shù)關(guān)系式為y=kx+b,

∵圖象過點(diǎn)(602000),(903800),

解得 ,

y=60x-1600

②∵小明行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長(zhǎng)的2倍,小麗在小明出發(fā)后1小時(shí)才乘上纜車,纜車的平均速度為190m/min,

∴小麗行駛的路程為;3800÷2=1900m,行駛的時(shí)間為:1900÷190=10min

∴小麗到達(dá)終點(diǎn),小明行駛的時(shí)間為:60+10=70min

∴將x=70代入y=60x-1600得,y=60×70-1600=2600

∴小明離纜車終點(diǎn)的路程是:3800-2600=1200m

答:小明離纜車終點(diǎn)的路程是1200m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。

A. ①和② B. ②和③ C. ①和③ D. ②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以正方形邊為直徑作半圓,過點(diǎn)作直線切半圓于點(diǎn),交邊于點(diǎn),若的周長(zhǎng)為,則直角梯形周長(zhǎng)為(

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD中,已知AD=8,AB=6E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)-2≤x≤1時(shí),二次函數(shù)若 有最大值4,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀探索:“任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半”?(完成下列空格)

(1)當(dāng)已知矩形A的邊長(zhǎng)分別為6和1時(shí),小亮同學(xué)是這樣研究的:

設(shè)所求矩形的兩邊分別是xy.

由題意得方程組:

消去y,化簡(jiǎn)得:

∴滿足要求的矩形B存在.

(2)如果已知矩形A的邊長(zhǎng)分別為2和1,請(qǐng)你仿照小亮的方法研究是否存在滿足要求的矩形B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹形圖或列表的方法,求:

(1)兩次取出小球上的數(shù)字相同的概率;

(2)兩次取出小球上的數(shù)字之和大于3的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案