【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為個(gè)單位長(zhǎng)度的正方形,的頂點(diǎn)都在格點(diǎn)上,建立平面直角坐標(biāo)系.

點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________;

以原點(diǎn)為位似中心,將放大,使變換后得到的對(duì)應(yīng)邊的比為.請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出,并寫出點(diǎn)的坐標(biāo):________

向左平移個(gè)單位,請(qǐng)畫出平移后的;若內(nèi)的一點(diǎn),其坐標(biāo)為,則平移后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________

【答案】

【解析】

(1)直接根據(jù)圖形即可寫出點(diǎn)AC的坐標(biāo);

(2)根據(jù)位似變換的要求,找出變換后的對(duì)應(yīng)點(diǎn),然后順次連接各點(diǎn)即可.

(3)找出三角形平移后各頂點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接即可;根據(jù)平移的規(guī)律即可寫出點(diǎn)M平移后的坐標(biāo).

(1)A(-2,-3),C(-3,-2).

(2)所作圖形如下所示:

結(jié)合圖形可得:A1(4,6).

(3)

點(diǎn)M1的坐標(biāo)為:(-2a-5,-2b).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,有兩定點(diǎn)、是反比例函數(shù)圖象上動(dòng)點(diǎn),當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),在AD右側(cè)作ADE,使得AD=AE,∠DAE=BAC,聯(lián)結(jié)DE,CE。

1)當(dāng)點(diǎn)DBC邊上時(shí),求證:EC=DB;

2)當(dāng)ECAB,若ABD的最小角為20°,請(qǐng)寫出ADB的度數(shù),并對(duì)其中一個(gè)答案加以證明。

答:∠ADB的度數(shù)除了20°,還可能是 (直接寫出所有答案,并對(duì)其中一個(gè)答案加以證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,,它們交于點(diǎn),

求證:

當(dāng),求的度數(shù).

當(dāng)四邊形是菱形時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A,B的坐標(biāo)分別為(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)圖1中,點(diǎn)C的坐標(biāo)為 ;

(2)如圖2,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)E在射線CD上,過點(diǎn)BBFBEy軸于點(diǎn)F

①當(dāng)點(diǎn)E為線段CD的中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo);

②當(dāng)點(diǎn)E在第二象限時(shí),請(qǐng)直接寫出F點(diǎn)縱坐標(biāo)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DBCB的延長(zhǎng)線于G

1)求證:△ADE≌△CBF;

2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩村在一條小河的同一側(cè),要在河邊建一水廠向兩村供水

1)若要使自來水廠到兩村的距離相等,廠址應(yīng)選在哪個(gè)位置?

2)若要使自來水廠到兩村的輸水管用料最省,廠址應(yīng)選在哪個(gè)位置?

請(qǐng)用尺規(guī)作圖,將上述兩種情況下的自來水廠廠址分別在圖(1)(2)中標(biāo)出,并保留作圖痕跡。

查看答案和解析>>

同步練習(xí)冊(cè)答案