【題目】如圖,已知RtABC 中,∠ACB=90°,BC=2,AC=3,以點(diǎn)C為圓心、CB為半徑的圓交AB于點(diǎn)D,過(guò)點(diǎn)AAECD,交BC延長(zhǎng)線于點(diǎn)E.

(1)求CE的長(zhǎng);

(2)P CE延長(zhǎng)線上一點(diǎn),直線AP、CD交于點(diǎn)Q.

①如果ACQ ∽△CPQ,求CP的長(zhǎng);

②如果以點(diǎn)A為圓心,AQ為半徑的圓與⊙C相切,求CP的長(zhǎng).

【答案】(1)CE=;(2);

【解析】分析:(1)由平行線分線段成比例定理得:.再由BC=DC,得到BE=AE設(shè)CE=xAE=BE=x+2.Rt△ACE中,由勾股定理即可得出結(jié)論.

2)①由△ACQ ∽△CPQ,得到∠ACQ=P再由平行線的性質(zhì)得到∠ACQ=CAE,則∠CAE=P,即可證明△ACE ∽△PCA,由相似△的性質(zhì)即可得到結(jié)論

②設(shè)CP=t,則RtACP中,由勾股定理得:

再由平行線分線段成比例定理得,可求出.然后分兩種情況討論:①若兩圓外切,則,②若兩圓內(nèi)切,則,解方程即可.

詳解:(1)∵AECD.∵BC=DC,BE=AE

設(shè)CE=x,AE=BE=x+2.

ACB=90°,∴ ,,∴,即

2)①∵△ACQ ∽△CPQ,∠QAC>P∴∠ACQ=P

又∵AECD,∴∠ACQ=CAE∴∠CAE=P,

∴△ACE ∽△PCA

,

,

②設(shè)CP=t,則

∵∠ACB=90°,∴

AECD,即,∴

若兩圓外切,那么,此時(shí)方程無(wú)實(shí)數(shù)解.

若兩圓內(nèi)切,那么,∴解得

又∵,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)漢字聽寫大會(huì)”是由中央電視臺(tái)和國(guó)家語(yǔ)言文字工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過(guò)節(jié)目的播出,能吸引更多的人關(guān)注對(duì)漢字文化的學(xué)習(xí).某校也開展了一次“漢字聽寫”比賽,每位參賽學(xué)生聽寫40個(gè)漢字.比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽寫結(jié)果,按聽寫正確的漢字個(gè)數(shù)x繪制成了以下不完整的統(tǒng)計(jì)圖.

根據(jù)以上信息回答下列問(wèn)題:

1)本次共隨機(jī)抽取了   名學(xué)生進(jìn)行調(diào)查,聽寫正確的漢字個(gè)數(shù)x   范圍的人數(shù)最多;

2)補(bǔ)全頻數(shù)分布直方圖;

3)各組的組中值如下表所示.若用各組的組中值代表各組每位學(xué)生聽寫正確的漢字個(gè)數(shù),求被調(diào)查學(xué)生聽寫正確的漢字個(gè)數(shù)的平均數(shù);

聽寫正確的漢字個(gè)數(shù)x

組中值

1x11

6

11x21

16

21x31

26

31x41

36

4)該校共有1350名學(xué)生,如果聽寫正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請(qǐng)你估計(jì)該校本次“漢字聽寫”比賽達(dá)到良好的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)市民節(jié)約用水,某市自來(lái)水公司對(duì)每戶用水量進(jìn)行了分段計(jì)費(fèi),每戶每月用水量在規(guī)定噸數(shù)以下的收費(fèi)標(biāo)準(zhǔn)相同,規(guī)定噸數(shù)以上的超過(guò)部分收費(fèi)相同.如表是小明家1-4

用水量和交費(fèi)情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量()

6

7

12

15

水費(fèi)()

12

14

28

37

1)該市規(guī)定用水量為 噸,規(guī)定用量?jī)?nèi)的收費(fèi)標(biāo)準(zhǔn)是 /噸,超過(guò)部分的收費(fèi)標(biāo)準(zhǔn)是 /噸。

2)若小明家5月份用水20噸,則應(yīng)繳水費(fèi) 元。

3)若小明家6月份應(yīng)交水費(fèi)46元,則6月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是描述客觀世界運(yùn)動(dòng)變化的重要模型,理解函數(shù)的本質(zhì)是重要的任務(wù)。

(1)如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為A(6,0)、B(0,2),點(diǎn)C(x,y)在線段AB上,計(jì)算(x+y)的最大值。小明的想法是:這里有兩個(gè)變量x、y,若最大值存在,設(shè)最大值為m,則有函數(shù)關(guān)系式y=-x+m,由一次函數(shù)的圖像可知,當(dāng)該直線與y軸交點(diǎn)最高時(shí),就是m的最大值,(x+y)的最大值為 ;

(2)請(qǐng)你用(1)中小明的想法解決下面問(wèn)題:

如圖2,以(1)中的AB為斜邊在右上方作Rt△ABM.設(shè)點(diǎn)M坐標(biāo)為(x,y),求(x+y)的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度(米)與挖掘時(shí)間(天)之間的關(guān)系如圖所示,則下列說(shuō)法中:

①甲隊(duì)每天挖100米;②乙隊(duì)開挖兩天后,每天挖50米;③甲隊(duì)比乙隊(duì)提前1天完成任務(wù);④當(dāng)時(shí),甲乙兩隊(duì)所挖管道長(zhǎng)度相同,不正確的個(gè)數(shù)有(

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l經(jīng)過(guò)⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C⊙O上,且∠AOC30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP⊙O相交于另一點(diǎn)Q,如果QPQO,則∠OCP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)的一檔娛樂(lè)性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.

(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;

(2)請(qǐng)用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點(diǎn)E,交線段DC的延長(zhǎng)線于點(diǎn)F,以EC、CF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點(diǎn),求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請(qǐng)直接寫出∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以矩形的頂點(diǎn)為原點(diǎn),所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系,頂點(diǎn)為點(diǎn)的拋物線經(jīng)過(guò)點(diǎn),點(diǎn).

1)寫出拋物線的對(duì)稱軸及點(diǎn)的坐標(biāo),

2)將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到矩形.

①當(dāng)點(diǎn)恰好落在的延長(zhǎng)線上時(shí),如圖2,求點(diǎn)的坐標(biāo).

②在旋轉(zhuǎn)過(guò)程中,直線與直線分別與拋物線的對(duì)稱軸相交于點(diǎn),點(diǎn).若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案