【題目】已知反比例函數(shù)為常數(shù)).

(1)若點(diǎn)和點(diǎn)是該反比例函數(shù)圖象上的兩點(diǎn),試?yán)梅幢壤瘮?shù)的性質(zhì)比較的大。

(2)設(shè)點(diǎn))是其圖象上的一點(diǎn),過點(diǎn)軸于點(diǎn),若,為坐標(biāo)原點(diǎn)),求的值,并直接寫出不等式的解集.

【答案】(1)y1y2;(2)k=±1,當(dāng)k=﹣1時(shí),解集為x或0x;當(dāng)k=1時(shí),則解集為:x0.

【解析】

試題分析:(1)先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限及其增減性,再根據(jù)P1、P2兩點(diǎn)的橫坐標(biāo)判斷出兩點(diǎn)所在的象限,故可得出結(jié)論.

(2)根據(jù)題意求得﹣n=2m,根據(jù)勾股定理求得m=1,n=﹣2,得到P(1,﹣2),即可得到﹣k2﹣1=﹣2,即可求得k的值,然后分兩種情況借助反比例函數(shù)和正比例函數(shù)圖象即可求得.

試題解析:(1)﹣k2﹣10,反比例函數(shù)在每一個(gè)象限內(nèi)y隨x的增大而增大,

0,y1y2;

(2)點(diǎn)P(m,n)在反比例函數(shù)的圖象上,m0,n0,

OM=m,PM=﹣n,tanPOM=2,=2,﹣n=2m,

PO= ,m2+(﹣n)2=5,m=1,n=﹣2,P(1,﹣2),

﹣k2﹣1=﹣2,解得k=±1,

當(dāng)k=﹣1時(shí),則不等式kx+ 0的解集為:x或0x

當(dāng)k=1時(shí),則不等式kx+0的解集為:x0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廣告公司設(shè)計(jì)一幅周長為16米的矩形廣告牌,廣告設(shè)計(jì)費(fèi)為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)設(shè)計(jì)費(fèi)能達(dá)到24000元嗎?為什么?

(3)當(dāng)x是多少米時(shí),設(shè)計(jì)費(fèi)最多?最多是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是邊長為1的正方形,,所在直線上的兩點(diǎn),若,,則以下結(jié)論正確的是(

A. B. C. D.四邊形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲開車從距離B市100千米的A市出發(fā)去B市,乙從同一路線上的C市出發(fā)也去往B市,二人離A市的距離與行駛時(shí)間的函數(shù)圖象如圖(y代表距離,x代表時(shí)間).
(1)C市離A市的距離是千米;
(2)甲的速度是千米∕小時(shí),乙的速度是千米∕小時(shí);
(3)小時(shí),甲追上乙;
(4)試分別寫出甲、乙離開A市的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)關(guān)系式.(注明自變量的范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明a>b時(shí),應(yīng)假設(shè)( )

A. a<b B. ab C. ab D. ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),其頂點(diǎn)記為,自變量對應(yīng)的函數(shù)值相等.若點(diǎn)在直線上,點(diǎn)在拋物線上.

(1)求該拋物線的解析式;

(2)設(shè)對稱軸右側(cè)軸上方的圖象上任一點(diǎn)為,在軸上有一點(diǎn),試比較銳角的大。ú槐刈C明),并寫出相應(yīng)的點(diǎn)橫坐標(biāo)的取值范圍;

(3)直線與拋物線另一點(diǎn)記為,為線段上一動(dòng)點(diǎn)(點(diǎn)不與重合).設(shè)點(diǎn)坐標(biāo)為,過軸于點(diǎn),將以點(diǎn),,,為頂點(diǎn)的四邊形的面積表示為的函數(shù),標(biāo)出自變量的取值范圍,并求出可能取得的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:a2﹣2ab+b2﹣c2= . y2﹣7y+12=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某藥品原價(jià)每盒28元,為響應(yīng)國家解決老百姓看病貴的號召,經(jīng)過連續(xù)兩次降價(jià),現(xiàn)在售價(jià)每盒16元,設(shè)該藥品平均每次降價(jià)的百分率是x,由題意,所列方程正確的是(  )

A. 28(1-2x)=16 B. 16(1+2x)=28 C. 28(1-x)2=16 D. 16(1+x)2=28

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若9x2-kxy+4y2是一個(gè)完全平方式,則k的值是

查看答案和解析>>

同步練習(xí)冊答案