【題目】某文化中學教職工情況如下(單位:人):領(lǐng)導(dǎo):9;教師:90;職員:15;工人:6.為了便于比較和統(tǒng)計,你能將該文化中學教職工的人數(shù)情況制成一幅扇形統(tǒng)計圖嗎?試試看.
【答案】答案見解析
【解析】
用總?cè)藬?shù)除以各教職工人數(shù),得到百分比,再乘以360°即可得到圓心角的度數(shù),即可解答
解:能.(1)計算領(lǐng)導(dǎo)、教師、職員、工人人數(shù)占全體教職工人數(shù)的百分比,見下表.
項目 | 領(lǐng)導(dǎo) | 教師 | 職員 | 工人 |
百分比 | 7.5% | 75% | 12.5% | 5% |
(2)計算各個扇形圓心角的度數(shù).領(lǐng)導(dǎo):360°×7.5%=27°,教師:360°×75%=270°,職員:360°×12.5%=45°,工人:360°×5%=18°.
(3)在圓中畫出各個扇形,如圖所示,并標上百分比.
科目:初中數(shù)學 來源: 題型:
【題目】某單位欲從內(nèi)部招聘管理人員一名,對甲乙丙三名候選人進行了筆試和面試兩項測試,三人的測試成績?nèi)缦卤硭荆?/span>
根據(jù)錄用程序,組織200名職工對三人利用投票推薦的方式進行民主評議,三人得票率(沒有棄權(quán),每位職工只能推薦1人)如圖所示,每得一票記作1分.
(1)請算出三人的民主評議得分;
(2)根據(jù)實際需要,單位將筆試,面試,民主評議三項測試得分按4:3:3的比例確定個人成績,那么誰將被錄用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平行四邊形的對角線分別為 x、y,一邊長為 12,則 x、y 的值可能是( )
A.8 與 14B.10 與 14C.18 與 20D.4 與 28
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,D、E、F是△ABC三邊的中點,下列結(jié)論:①四邊形AEDF,BDEF,CDFE都是平行四邊形;②△ABC∽△DEF;③S△ABC=2S△DEF;④△DEF的周長是△ABC周長的一半,其中正確的序號是( 。
A. ①②④ B. ①②③ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在日常生活中如取款、上網(wǎng)等都需要密碼,有一種用“因式分解法”產(chǎn)生的密碼,方便記憶,原理是對于多項,因式分解的結(jié)果是,若取,時,則各個因式的值是:,,,于是就可以把“180162”作為一個六位數(shù)的密碼,對于多項式,取,時,用上述方法產(chǎn)生的密碼是________ (寫出一個即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】心理學家研究發(fā)現(xiàn),一般情況下,學生的注意力隨著老師講課時間的變化而變化,講課開始時,學生的注意力逐步增強,中間有一段時間學生的注意力保持較為理想的狀態(tài),隨后學生的注意力開始分散.經(jīng)過實驗分析可知,學生的注意力y隨時間t(分鐘)的變化規(guī)律有如下關(guān)系式: (y值越大表示接受能力越強)
(1)講課開始后第5分鐘時與講課開始后第25分鐘時比較,何時學生的注意力更集中;
(2)講課開始后多少分鐘,學生的注意力最集中能持續(xù)多少分鐘;
(3)一道數(shù)學難題,需要講解24分鐘,為了效果較好,要求學生的注意力最低達到180,那么經(jīng)過適當安排,老師能否在學生注意力達到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,動點P從點A開始沿A→B→C→D 的路徑勻速前進到D為止.在這個過程中,△APD的面積S隨時間t的變化關(guān)系用圖象表示正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個全等的直角三角形重疊在一起,將其中的一個三角形沿著點B到C的方向平移到的位置,,,平移距離為6,則陰影部分面積為
A. 24 B. 40 C. 42 D. 48
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com