【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作⊙O的切線交AC的延長線于點E.求DE的長.

【答案】DE=4.

【解析】試題分析:過點OOH⊥AC于點H,只要證明四邊形OHED是矩形即可得到DE=OH,在RT△AOH中利用勾股定理求出OH即可.

試題解析:

解:連接OD,過點OOHAC,垂足為H

由垂徑定理得AH=AC=3

RtAOH中,OH4

DE切⊙OD,

ODDEODE90°

AD平分∠BAC,

∴∠BADCAD

OAOD,

∴∠BADODA,

∴∠CADODA

ODAC

∴∠E180°90°90°

OHAC,

∴∠OHE90°,

∴四邊形ODEH為矩形.

DEOH4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明袋子中有1個紅球、1 個綠球和n個白球,這些球除顏色外都相同.

(1)從袋中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻.經大量試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.75左右,求n的值;

(2)當n=2時,把袋中的球攪勻后任意摸出2個球,用樹狀圖或列表求摸出的2個球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中正確的是( )

A. 有一組鄰邊相等的四邊形是菱形

B. 有一個角是直角的平行四邊形是矩形

C. 對角線垂直的平行四邊形是正方形

D. 一組對邊平行的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知地球距離月球表面約為383900千米,將383900千米用科學記數(shù)法表示為(保留到千位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8k,BC=5k(k為常數(shù),且k>0),動點P在AB邊上(點P不與A、B重合),點Q、R分別在BC、DA邊上,且AP:BQ:DR=3:2:1.點A關于直線PR的對稱點為A′,連接PA′、RA′、PQ.

(1)若k=4,PA=15,則四邊形PARA′的形狀是;
(2)設DR=x,點B關于直線PQ的對稱點為B′點.
①記△PRA′的面積為S1 , △PQB′的面積為S2 . 當S1<S2時,求相應x的取值范圍及S2﹣S1的最大值;(用含k的代數(shù)式表示)
②在點P的運動過程中,判斷點B′能否與點A′重合?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x和反比例函數(shù) (k>0),點A(m,n)(m>0)在反比例函數(shù) 上.

(1)當m=n=2時,
①直接寫出k的值;
②將直線y=﹣x作怎樣的平移能使平移后的直線與反比例函數(shù) 只有一個交點.
(2)將直線y=﹣x繞著原點O旋轉,設旋轉后的直線與反比例函數(shù) 交于點B(a,b)(a>0,b>0)和點C.設直線AB,AC分別與x軸交于D,E兩點,試問: 的值存在怎樣的數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司準備與汽車租憑公司簽訂租車合同,以每月用車路程x km計算,甲汽車租憑公司每月收取的租賃費為y1元,乙汽車租憑公司每月收取的租賃費為y2元,若y1、y2與x之間的函數(shù)關系如圖所示(其中x=0對應的函數(shù)值為月固定租賃費),則下列判斷錯誤的是(

A.當月用車路程為2000km時,兩家汽車租賃公司租賃費用相同
B.當月用車路程為2300km時,租賃乙汽車租賃公司車比較合算
C.除去月固定租賃費,甲租賃公司每公里收取的費用比乙公司多
D.甲租賃公司每月的固定租賃費高于乙租賃公司

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=6,點PAB上,點QDC的延長線上,連接DPQP,且∠APD=∠QPDPQBC于點G.

(1)求證:DQPQ;

(2)求AP·DQ的最大值;

(3)若PAB的中點,求PG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出下列算式:①(a3)2a3×2a6;②amanam+n(m,n為正整數(shù));③[(x)4]5=-x20.其中正確的算式有( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步練習冊答案