如圖,已知AB是⊙O的直徑,PB為⊙O的切線,B為切點(diǎn),OP⊥弦BC于點(diǎn)D且交⊙O于點(diǎn)E.

(1)求證:∠OPB=∠AEC;

(2)若點(diǎn)C為半圓的三等分點(diǎn),請(qǐng)你判斷四邊形AOEC為哪種特殊四邊形?并說明理由.

 

【答案】

(1)證明:∵AB是⊙O的直徑,PB為⊙O的切線,

∴PB⊥AB.

∴∠OPB+∠POB=90°.

∵OP⊥BC,

∴∠ABC+∠POB=90°.

∴∠ABC=∠OPB.

又∵∠AEC=∠ABC,

∴∠OPB=∠AEC.

(2)解:四邊形AOEC是菱形.

∵OP⊥弦BC于點(diǎn)D且交⊙O于點(diǎn)E,∴=

∵C為半圓ACB¯的三等分點(diǎn),∴==

∴∠ABC=∠ECB.∴AB∥CE.

∵AB是⊙O的直徑,∴AC⊥BC.

又 OP⊥弦BC于點(diǎn)D且交⊙O于點(diǎn)E,

∴AC∥OE.∴四邊形AOEC是平行四邊形.

又 OA=OE,∴四邊形AOEC是菱形.

【解析】(1)找中間量∠ABC,利用等角的余角相等證∠ABC=∠OPB,同弧所對(duì)的圓周角相等即可

(2)利用用一組鄰邊相等的平行四邊形是菱形及兩組對(duì)邊分別平行的四邊形是平行四邊形即可。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案