在平面直角坐標(biāo)中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-2,3),B(-4,-1),C(2,0),將△ABC平移至△A1B1C1的位置,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別是A1,B1,C1,若點(diǎn)A1的坐標(biāo)為(3,1),則點(diǎn)C1的坐標(biāo)為
(7,-2)
(7,-2)
分析:首先根據(jù)A點(diǎn)平移后的坐標(biāo)變化,確定三角形的平移方法,點(diǎn)A橫坐標(biāo)加5,縱坐標(biāo)減2,那么讓點(diǎn)C的橫坐標(biāo)加5,縱坐標(biāo)-2即為點(diǎn)C1的坐標(biāo).
解答:解:由A(-2,3)平移后點(diǎn)A1的坐標(biāo)為(3,1),可得A點(diǎn)橫坐標(biāo)加5,縱坐標(biāo)減2,
則點(diǎn)C的坐標(biāo)變化與A點(diǎn)的變化相同,故C1(2+5,0-2),即(7,-2).
故答案為:(7,-2).
點(diǎn)評(píng):本題主要考查圖形的平移變換,解決本題的關(guān)鍵是根據(jù)已知對(duì)應(yīng)點(diǎn)找到所求對(duì)應(yīng)點(diǎn)之間的變化規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在平面直角坐標(biāo)中,拋物線(xiàn)的頂點(diǎn)P到軸的距離是4,拋物線(xiàn)與x軸相交于O、M兩點(diǎn),OM=4;矩形ABCD的邊BC在線(xiàn)段的OM上,點(diǎn)A、D在拋物線(xiàn)上.
(1)請(qǐng)寫(xiě)出P、M兩點(diǎn)坐標(biāo),并求出這條拋物線(xiàn)的解析式;
(2)設(shè)矩形ABCD的周長(zhǎng)為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請(qǐng)判斷在拋物線(xiàn)上是否存在點(diǎn)Q(除點(diǎn)M外),使得△OPQ也是等腰三角形,簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)中,點(diǎn)O1(-4,0),半徑為8的⊙O1與x軸交于A、B,過(guò)A作直線(xiàn)l與x軸負(fù)方向成60°角,且交y軸于點(diǎn)C,以點(diǎn)O2(13,5)為圓心的圓與x軸切于點(diǎn)D.
(1)求直線(xiàn)l的解析式;
(2)將⊙O2以每秒1個(gè)單位長(zhǎng)的速度沿x軸向左平移,當(dāng)⊙O2第一次與⊙O1外切時(shí),求平移的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,點(diǎn)A(2,2),試在x軸上找點(diǎn)P,使△AOP是等腰三角形,那么這樣的三角形有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案