【題目】我們定義:對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)如圖1,垂美四邊形ABCD的對(duì)角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;
(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BE,CG,GE.
①求證:四邊形BCGE是垂美四邊形;
②若AC=4,AB=5,求GE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)①見(jiàn)解析;②GE=
【解析】
(1)由垂美四邊形得出AC⊥BD,則∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出結(jié)論;
(2)①連接BG、CE相交于點(diǎn)N,CE交AB于點(diǎn)M,由正方形的性質(zhì)得出AG=AC,AB=AE,∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS證得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出結(jié)論;
②垂美四邊形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性質(zhì)得出CG=4 ,BE=5,則GE2=CG2+BE2-CB2=73,即可得出結(jié)果.
(1)證明:∵垂美四邊形ABCD的對(duì)角線AC,BD交于O,
∴AC⊥BD,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,
AB2+CD2=AO2+BO2+CO2+DO2,
∴AD2+BC2=AB2+CD2;
(2)①證明:連接BG、CE相交于點(diǎn)N,CE交AB于點(diǎn)M,如圖2所示:
∵正方形ACFG和正方形ABDE,
∴AG=AC,AB=AE,∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,,
∴△GAB≌△CAE(SAS),
∴∠ABG=∠AEC,
∵∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,
∴∠ABG+∠BMN=90°,即CE⊥BG,
∴四邊形BCGE是垂美四邊形;
②解:∵四邊形BCGE是垂美四邊形,
∴由(1)得:CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC===3,
∵正方形ACFG和正方形ABDE,
∴CG=AC=4,BE=AB=5,
∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,
∴GE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A,B關(guān)于直線x=﹣1對(duì)稱(chēng),且AB=6,頂點(diǎn)在函數(shù)y=2x的圖象上,則這個(gè)二次函數(shù)的表達(dá)式為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實(shí)驗(yàn),他們共拋了60次,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如表:
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說(shuō):“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說(shuō)法是否正確并說(shuō)明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=70°.按下列步驟作圖:①分別以點(diǎn)B,C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交BA,BC,CA,CB于點(diǎn)D,E,F,G;②分別以點(diǎn)D,E為圓心,大于DE為半徑畫(huà)弧,兩弧交于點(diǎn)M;③分別以點(diǎn)F,G為圓心,大于FG為半徑畫(huà)弧,兩弧交于點(diǎn)N;④作射線BM交射線CN于點(diǎn)O.則∠BOC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x、y是實(shí)數(shù)且滿(mǎn)足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在反比例函數(shù)y=﹣的圖象上有一點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第一象限內(nèi)有一點(diǎn)C,滿(mǎn)足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y=的圖象上運(yùn)動(dòng),若tan∠CAB=3,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(0,1),且與直線y=2x﹣5相交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為2,直線y=2x﹣5與y軸交于點(diǎn)B.
(1)求k、b的值;
(2)求△ABP的面積;
(3)根據(jù)圖象可得,關(guān)于x的不等式2x﹣5>kx+b的解集是 ;
(4)若點(diǎn)Q在x軸上,且滿(mǎn)足S△ABQ=S△ABP,則點(diǎn)Q的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個(gè)結(jié)論:
①abc<0;
②b<a﹣c;
③4a+2b+c>0;
④2c<3b;
⑤a+b<m(am+b),(m≠1的實(shí)數(shù))
⑥2a+b+c>0,其中正確的結(jié)論的有_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com