【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、Bx軸上,ABBCAOOB2,BC3

1)寫(xiě)出點(diǎn)A、B、C的坐標(biāo).

2)如圖,過(guò)點(diǎn)BBDACy軸于點(diǎn)D,求∠CAB+BDO的大。

3)如圖,在圖中,作AE、DE分別平分∠CAB、∠ODB,求∠AED的度數(shù).

【答案】1A(﹣20),B(2,0),C(23);(290°;(345°.

【解析】

1)根據(jù)圖形和已知條件即可直接寫(xiě)出答案;

2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ABD=CAB,則∠CAB+BDO=ABD+BDO=90°;

3)根據(jù)角平分線的定義可得∠CAE+BDE,過(guò)點(diǎn)EEFAC,然后根據(jù)平行線的性質(zhì)求出∠AED=CAE+BDE

解:(1)在平面直角坐標(biāo)系中,點(diǎn)A、Bx軸上,AO=OB=2,

A(﹣20),B(2,0),

ABBC, BC=3,

C(2,3);

2)在直角坐標(biāo)系中,DOAB,

∴∠ABD+BDO=90°

BDAC,

∴∠ABD=CAB,

∴∠CAB+BDO =ABD+BDO=90°;

3)由(2)得:∠CAB+BDO =90°

AE,DE分別平分∠CAB,∠ODB,

∴∠CAE=BAC ,∠BDE =BDO

∴∠CAE+BDE=BAC+BDO=(BAC+BDO)= ×90°=45°,

如圖2,過(guò)點(diǎn)EEFAC,

∴∠CAE=AEF,

又∵BDAC,

BDEF,

∴∠BDE=DEF,

∴∠AED=AEF+DEF=CAE+BDE=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=60°.將一直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

1)求∠CON的度數(shù);

2)如圖2是將圖1中的三角板繞點(diǎn)O按每秒15°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周的情況,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),三條射線OAOC、OM構(gòu)成兩個(gè)相等的角,求此時(shí)的t

3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3(使ON在∠AOC的外部),圖4(使ON在∠AOC的內(nèi)部)請(qǐng)分別探究∠AOM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組 ,并寫(xiě)出該不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖1,當(dāng)點(diǎn)B1在線段BA延長(zhǎng)線上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;

(2)如圖2,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1 , 求線段EF1長(zhǎng)度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二廣高速在益陽(yáng)境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運(yùn)輸.益安車(chē)隊(duì)有載重量為8噸、10噸的卡車(chē)共12輛,全部車(chē)輛運(yùn)輸一次能運(yùn)輸110噸沙石.

1)求益安車(chē)隊(duì)載重量為8噸、10噸的卡車(chē)各有多少輛?

2)隨著工程的進(jìn)展,益安車(chē)隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車(chē)共6輛,車(chē)隊(duì)有多少種購(gòu)買(mǎi)方案,請(qǐng)你一一寫(xiě)出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買(mǎi)甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買(mǎi)甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買(mǎi)方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D、E、F分別在邊BC、AB、CA上,且DE∥CA,DF∥BA.則下列說(shuō)法:

①四邊形AEDF是平行四邊形;

②如果∠BAC=90°,那么四邊形AEDF是矩形;

③如果AD平分∠BAC,那么四邊形AEDF是菱形;

④如果∠BAC=90°,AD平分∠BAC,那么四邊形AEDF是正方形.

其中正確的是______(只填寫(xiě)序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果點(diǎn)P(2x+6,x-4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=2,AD=3,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AD邊上的一個(gè)動(dòng)點(diǎn),將△AEF沿EF所在直線翻折,得到△A′EF,則A′C的長(zhǎng)的最小值是

查看答案和解析>>

同步練習(xí)冊(cè)答案