【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(m≠0)的圖象在第一象限交于點C,CD垂直于x軸,垂足為D,若OA=OB=OD=1.
(1)求點A、B、D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)在x>0的條件下,根據(jù)圖象說出反比例函數(shù)的值大于一次函數(shù)值的x的取值范圍.
【答案】(1)A(﹣1,0),B(0,1),D(1,0);
(2)反比例函數(shù)的解析式為y=.
(3)由圖像可知x的取值范圍是0<x<1
【解析】試題分析:(1)根據(jù)OA=OB=OD=1和各坐標(biāo)軸上的點的特點易得到所求點的坐標(biāo);(2)將A、B兩點坐標(biāo)分別代入y=kx+b,可用待定系數(shù)法確定一次函數(shù)的解析式,由C點在一次函數(shù)的圖象上可確定C點坐標(biāo),將C點坐標(biāo)代入y= 可確定反比例函數(shù)的解析式;(3)觀察圖象即可得結(jié)論.
試題解析:
(1)∵OA=OB=OD=1,
∴點A、B、D的坐標(biāo)分別為A(﹣1,0),B(0,1),D(1,0);
(2)∵點A、B在一次函數(shù)y=kx+b(k≠0)的圖象上,
∴,
解得,
∴一次函數(shù)的解析式為y=x+1.
∵點C在一次函數(shù)y=x+1的圖象上,且CD⊥x軸,
∴點C的坐標(biāo)為(1,2),
又∵點C在反比例函數(shù)y=(m≠0)的圖象上,
∴m=2;
∴反比例函數(shù)的解析式為y=.
(3)由圖像可知x的取值范圍是0<x<1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,求兩次都摸到紅球的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.平分弦的直徑垂直于弦;
B.與直徑垂直的直線是圓的切線;
C.對角線互相垂直的四邊形是菱形;
D.連接等腰梯形四邊中點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知α、β是方程x2﹣2x﹣4=0的兩個實數(shù)根,則α3+8β+6的值為( 。
A. ﹣1 B. 2 C. 22 D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D,E分別為AC,AB的中點,BF∥CE交DE的延長線于點F.
(1)求證:四邊形ECBF是平行四邊形;
(2) 當(dāng)∠A=時,求證:四邊形ECBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算,正確的是( )
A. (-a3b)2=a6b2 B. 4a-2a=2
C. a6÷a3=a2 D. (a-b)2=a2-b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校的衛(wèi)生檢查中,規(guī)定各班的教室衛(wèi)生成績占30%,環(huán)境衛(wèi)生成績占40%,個人衛(wèi)生成績占30%.八年級一班這三項成績分別為85分,90分和95分,求該班衛(wèi)生檢查的總成績 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com