【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線(xiàn)BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于

【答案】
【解析】解:在正方形ABCD中,

∵∠ABD=∠CBD=45°,

∵四邊形MNPQ和AEFG均為正方形,

∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,

∴△BEF與△BMN是等腰直角三角形,

∴FE=BE=AE= AB,BM=MN=QM,

同理DQ=MQ,

∴MN= BD= AB,

= = ,

所以答案是:

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識(shí),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列代數(shù)式書(shū)寫(xiě)規(guī)范的是( 。

A. a÷3B. a8C. 5aD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P,M,N分別在等邊△ABC的各邊上,且MP⊥AB,MN⊥BC,PN⊥AC.

(1)求證:△PMN是等邊三角形;

(2)AB9 cm,求CM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:圖1、圖2是兩張形狀、大小完全相同的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為.格中各有一個(gè)完全相同的三角形,請(qǐng)?jiān)趫D1、圖2分別面一條直線(xiàn),滿(mǎn)足以下要求

1)直線(xiàn)與三角形的交點(diǎn)要經(jīng)過(guò)網(wǎng)格的格點(diǎn)(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn))

2)在圖1、圖2中分別用不同的方法將三角形分成兩個(gè)圖形其中一個(gè)是三角形另一個(gè)是四邊形,分割后的三角形的面積記為,四邊形的面積為,且

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是x=﹣1.且過(guò)點(diǎn)(0.5,0),有下列結(jié)論:
①abc>0; ②a﹣2b+4c=0; ③25a﹣10b+4c=0; ④3b+2c>0;⑤a﹣b≥m(am﹣b).
其中所有正確的結(jié)論是( )

A.①②③
B.①③④
C.①②③⑤
D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線(xiàn)MN∥BC.設(shè)MN交∠ACB的平分線(xiàn)于點(diǎn)E,交∠ACB的外角平分線(xiàn)于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BE平分ABD,DE平分BDC,且BED =∠ABE +∠EDC

1)如圖1,求證:AB//CD;

2)如圖2,若ABE=3∠ABF,且BFD=30°時(shí),試求的值;

3)如圖3,若H是直線(xiàn)CD上一動(dòng)點(diǎn)(不與D重合),BI平分HBD,畫(huà)出圖形,并探究出EBIBHD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三名快遞員某天的工作情況如圖所示,其中點(diǎn),的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員上午派送快遞所用的時(shí)間和件數(shù);點(diǎn),,,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員下午派送快遞所用的時(shí)間和件數(shù).有如下三個(gè)結(jié)論:①上午派送快遞所用時(shí)間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號(hào)是(

A. ①②B. ①③C. D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,A(6a),B(b0),M(0c),P點(diǎn)為y軸上一動(dòng)點(diǎn),且(b2)2+|a6|+0

(1)求點(diǎn)B、M的坐標(biāo);

(2)當(dāng)P點(diǎn)在線(xiàn)段OM上運(yùn)動(dòng)時(shí),試問(wèn)是否存在一個(gè)點(diǎn)P使SPAB13,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo)與AB的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

(3)不論P點(diǎn)運(yùn)動(dòng)到直線(xiàn)OM上的任何位置(不包括點(diǎn)O、M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請(qǐng)利用所學(xué)知識(shí)找出并證明;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案