【題目】下面是小明主設(shè)計的作一個含30°角的直角三角形的尺規(guī)作圖過程.

已知:直線l

求作:ABC,使得∠ACB90°,∠ABC30°

作法:如圖,

①在直線l上任取兩點O,A

②以點O為圓心,OA長為半徑畫弧,交直線l于點B

③以點A為圓心,AO長為半徑畫弧,交于點C;

④連接AC,BC

所以ABC就是所求作的三角形.

根據(jù)小明設(shè)計的尺規(guī)作圖過程:

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:在⊙O中,AB為直徑,

∴∠ACB90°(①  ),(填推理的依據(jù))

連接OC

OAOCAC,

∴∠CAB60°,

∴∠ABC30°(②   ),(填推理的依據(jù))

【答案】(1)見解析;(2)①直徑所對的圓周角是直角;②直角三角形兩銳角互余

【解析】

1)根據(jù)小明設(shè)計的尺規(guī)作圖過程,用直尺和圓規(guī)作圖即可;

2)證明思路為:由圓周角定理可得,再連接OC,根據(jù)等圓的半徑相等可得,再根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形的性質(zhì)即可證.

1)根據(jù)小明設(shè)計的尺規(guī)作圖過程,用直尺和圓規(guī)作圖結(jié)果如下所示:

2)在⊙O中,AB為直徑

(①直徑所對的圓周角是直角)

連接OC

(②直角三角形兩銳角互余)

故答案為:①直徑所對的圓周角是直角;②直角三角形兩銳角互余.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣x2x+x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過BC兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD、BD.設(shè)點M運動的時間為tt0),請解答下列問題:

1)求點A的坐標(biāo)與直線l的表達(dá)式;

2)①請直接寫出點D的坐標(biāo)(用含t的式子表示),并求點D落在直線l上時t的值;

②求點M運動的過程中線段CD長度的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個底面直徑與杯高均為的杯子里面盛了一些溶液,當(dāng)它支在桌子上傾斜到液面與杯壁呈才能將液體倒出,則此時杯子最高處距離桌面________.(,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的例題及點撥,并解決問題:

例題:如圖①,在等邊ABC中,MBC邊上一點(不含端點BC),NABC的外角∠ACH的平分線上一點,且AM=MN.求證:∠AMN=60°

點撥:如圖②,作∠CBE=60°BENC的延長線相交于點E,得等邊BEC,連接EM.易證:ABMEBMSAS),可得AM=EM,∠1=2;又AM=MN,則EM=MN,可得∠3=4;由∠3+1=4+5=60°,進(jìn)一步可得∠1=2=5,又因為∠2+6=120°,所以∠5+6=120°,即:∠AMN=60°

問題:如圖③,在正方形A1B1C1D1中,M1B1C1邊上一點(不含端點B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點,且A1M1=M1N1.求證:∠A1M1N1=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個直角三角形紙片,放置在平面直角坐標(biāo)系中,點,點,點.將沿翻折得到(點為點的對應(yīng)點).

(Ⅰ)求的長及點的坐標(biāo);

(Ⅱ)點是線段上的點,點是線段上的點.

①已知,軸上的動點,當(dāng)取最小值時,求出點的坐標(biāo)及點到直線的距離;

②連接,且,現(xiàn)將沿翻折得到(點為點的對應(yīng)點),再將繞點順時針旋轉(zhuǎn),旋轉(zhuǎn)過程中,射線交直線分別為點,,最后將沿翻折得到(點為點的對應(yīng)點),連接,若,求點的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在AB兩個校區(qū)各有九年級學(xué)生200人,為了解這兩個校區(qū)九年級學(xué)生的教學(xué)學(xué)業(yè)水平的情況,進(jìn)行了抽樣調(diào)查,過程如下,請補充完整.

收集數(shù)據(jù):從A、B兩個校區(qū)各隨機(jī)抽取20名學(xué)生,進(jìn)行了數(shù)學(xué)學(xué)業(yè)水平測試,測試成績(百分制)如下:

A校區(qū)  86  74  78  81  76  75  86  70  75  90

     75  79  81  70  74  80  87  69  83  77

B校區(qū)  80  73  70  82  71  82  83  93  77  80

     81  93  81  73  88  79  81  70  40  83

整理、描述數(shù)據(jù) 按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績x

人數(shù)

校區(qū)

40≤x50

50≤x60

60≤x70

70≤x80

80≤x90

90≤x≤100

A

0

0

1

11

7

1

B

(說明:成績80分及以上的學(xué)業(yè)水平優(yōu)秀,7079分為淡定業(yè)水平良好,6069分為學(xué)業(yè)水平合格,60分以下為學(xué)業(yè)水平不合格)

分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

校區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

A

78.3

m

75

B

78

80.5

81

其中m   ;

得出結(jié)論:a.估計B校區(qū)九年級數(shù)學(xué)學(xué)業(yè)水平在優(yōu)秀以上的學(xué)生人數(shù)為  

b.可以推斷出  校區(qū)的九年級學(xué)生的數(shù)學(xué)學(xué)業(yè)水平較高,理由為   (至少從兩個不同的角度說明推斷的合理性).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信以其顛覆性的創(chuàng)新,贏得了數(shù)億人的支持,為了調(diào)查某中學(xué)學(xué)生在周日上微信的時間,隨機(jī)對100名男生和100名女生進(jìn)行了問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果

1:男生上微信時間的頻數(shù)分布表

上網(wǎng)時間(分鐘)

30≤x40

40≤x50

50≤x60

60≤x70

70≤x80

人數(shù)

5

25

30

25

15

2:女生上微信時間的頻數(shù)分布表

上網(wǎng)時間(分鐘)

30≤x40

40≤x50

50≤x60

60≤x70

70≤x80

人數(shù)

10

20

40

20

10

請結(jié)合圖表完成下列各題

1)完成表3

3

微信時間少于60分鐘

微信時間不少于60分鐘

男生人數(shù)

   

   

女生人數(shù)

   

   

2)若該中學(xué)共有女生750人,請估計其中上微信時間不少于60分鐘的人數(shù);

3)從表3的男生中抽取5人(其中3人上微信時間少于60分鐘,2人上微信時間不少于60分鐘),再從抽取的5人中任取2人,請用列表或畫樹狀圖的方法求出至少有一人上微信時間不少于60分鐘的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點軸交于點二次函數(shù)的圖象經(jīng)過兩點,且與軸的負(fù)半軸交于點

求二次函數(shù)的解析式及點的坐標(biāo).

是線段上的一動點,動點在直線下方的二次函數(shù)圖象上.設(shè)點的橫坐標(biāo)為.過點于點求線段的長關(guān)于的函數(shù)解析式,并求線段的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,BC2AB,點EBC邊上,連接DE、AE,若EA平分∠BED,則的值為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案