【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點分別是A3,4)、B12)、C53

1)將△ABC平移,使得點A的對應(yīng)點A1的坐標(biāo)為(﹣2,4),在如圖的坐標(biāo)系中畫出平移后的△A1B1C1;

2)將△A1B1C1繞點C1逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C1并直接寫出A2、B2的坐標(biāo);

3)求△A2B2C1的面積.

【答案】(1)見解析;(2)A2(﹣1,1)、B2(1,﹣1);(3)3.

【解析】

1)由點A及其對應(yīng)點A1的位置得出平移方向和距離,再將點B和點C分別按此方式平移得出其對應(yīng)點,繼而首尾順次連接即可得;

2)由旋轉(zhuǎn)的性質(zhì)作出變換后的對應(yīng)點,再首尾順次連接即可得;

3)利用割補(bǔ)法求解可得.

解:(1)如圖所示,A1B1C1即為所求.

2)如圖所示,A2B2C1即為所求,其中A2的坐標(biāo)為(﹣11)、B2的坐標(biāo)為(1,﹣1);

3A2B2C1的面積為2×4×2×2×1×2×1×43

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個分支上y隨x的增大而增大;③若點A(-1,a),點B(2,b)在圖象上,則a <b;④若點P(x,y)在圖象上,則點P1(-x,y)也在圖象上.其中正確的個數(shù)為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過點A,GD5

1)尋找并證明圖中的兩組相似三角形;

2)求HG、FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABC的頂點A在拋物線yx2上,頂點B,Cx軸的正半軸上,且點B的坐標(biāo)為(1,0)

(1)求點D坐標(biāo);

(2)將拋物線yx2適當(dāng)平移,使得平移后的拋物線同時經(jīng)過點B與點D,求平移后拋物線解析式,并說明你是如何平移的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2<a<﹣其中正確結(jié)論有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y是關(guān)于x的函數(shù),如果能在其函數(shù)圖象上能找到橫坐標(biāo)與縱坐標(biāo)相同的一個點Pt,t),則稱點P為函數(shù)圖象上的郡點.例如:直線y=2x-1上存在郡點”P1,1).

1)直線y=3x-4的郡點是______;雙曲線y=上的郡點是______

2)若拋物線y=x2+5x-5上有郡點,且郡點”A、B(點A,B可重合)的坐標(biāo)分別為(x1,y1),(x2,y2),求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為圓O的內(nèi)接三角形,BD為⊙O的直徑,ABACADBCE,AE2,ED4

1)求證:ABE∽△ADB,并求AB的長;

2)延長DBF,使BFBO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將邊長為4的等邊ABC的邊BC向兩端延長,使∠MAN120°

1)求證:MAB∽△ANC;

2)若CN4MB,求線段CN的長.

查看答案和解析>>

同步練習(xí)冊答案