【題目】拋物線y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說(shuō)法正確的是( )
A.b2﹣4ac<0
B.abc<0
C.
D.a﹣b+c<0
【答案】C
【解析】解:由拋物線的開口向下知a<0,
與y軸的交點(diǎn)為在y軸的正半軸上,
∴c>0,
對(duì)稱軸為y軸,即 <﹣1,
A、應(yīng)為b2﹣4ac>0,故本選項(xiàng)錯(cuò)誤;
B、abc>0,故本選項(xiàng)錯(cuò)誤;
C、即 <﹣1,故本選項(xiàng)正確;
D、x=﹣1時(shí)函數(shù)圖象上的點(diǎn)在第二象限,所以a﹣b+c>0,故本選項(xiàng)錯(cuò)誤.
所以答案是:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)分別是上的點(diǎn),分別交于,試說(shuō)明.閱讀下面的解題過(guò)程,在橫線上補(bǔ)全推理過(guò)程或依據(jù).
解:(已知)
(______________________)
(等量代換)
(_____________________)
∴(__________________________)
又(已知)
(等量代換)
______(____________________________)
(_________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),點(diǎn)M,N分別在射線OA,OB上(都不與點(diǎn)O重合),且∠MPN與∠AOB互補(bǔ).若∠MPN繞著點(diǎn)P轉(zhuǎn)動(dòng),那么以下四個(gè)結(jié)論:①PM=PN恒成立;②MN的長(zhǎng)不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過(guò)15m/s,在一條筆直公路BD的上方A處有一探測(cè)儀.如圖,AD=24m,∠D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°
(1)求B,C的距離.
(2)通過(guò)計(jì)算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點(diǎn)坐標(biāo)為(,m),則不等式組mx﹣2<kx+1<mx的解集為( 。
A. x> B. <x< C. x< D. 0<x<
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)-23×(1-)÷0.5;
(2)(--)÷-2;
(3)3(20-y)=6y-4(y-11);
(4)-1=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A(-2,-1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中(AB≠BC),直線EF經(jīng)過(guò)其對(duì)角線的交點(diǎn)O,且分別交AD,BC于點(diǎn)M,N,交BA,DC的延長(zhǎng)線于點(diǎn)E,F,下列結(jié)論:①AO=BO;②OE=OF;③△EAM≌△FCN;④△EAO≌△DCO.其中一定正確的是()
A. ①② B. ②③
C. ①④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一直角三角形紙片,∠C=90°,BC=6,AC=8,現(xiàn)將△ABC按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE的長(zhǎng)為( )
A. 2 B. C. D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com