如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;
(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo); 若不存在,請說明理由.

解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),
∴可設(shè)拋物線交點式為。
又∵拋物線經(jīng)過C(0,3),∴。
∴拋物線的解析式為:,即。
(2)∵△PBC的周長為:PB+PC+BC,且BC是定值。
∴當(dāng)PB+PC最小時,△PBC的周長最小。
∵點A、點B關(guān)于對稱軸I對稱,
∴連接AC交l于點P,即點P為所求的點。

∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC。
∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=。
∴△PBC的周長最小是:。
(3)①∵拋物線頂點D的坐標(biāo)為(﹣1,4),A(﹣3,0),
∴直線AD的解析式為y=2x+6
∵點E的橫坐標(biāo)為m,∴E(m,2m+6),F(xiàn)(m,
。
。
∴S與m的函數(shù)關(guān)系式為
,
∴當(dāng)m=﹣2時,S最大,最大值為1,此時點E的坐標(biāo)為(﹣2,2)。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線軸交于點.

(1)平移該拋物線使其經(jīng)過點和點(2,0),求平移后的拋物線解析式;
(2)求該拋物線的對稱軸與(1)中平移后的拋物線對稱軸之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標(biāo);
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點E.

(1)求證:△OAD≌△EAB;
(2)求過點O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點P,其關(guān)于直線BF的對稱點在x軸上?若有,求出點P的坐標(biāo);
(4)連接OE,若點M是直線BF上的一動點,且△BMD與△OED相似,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點為(3,4)的拋物線交 y軸與A點,交x軸與B、C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,-5).

(1)求此拋物線的解析式;
(2)過點B作線段AB的垂線交拋物線與點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形.若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點.

(1)寫出A、B兩點的坐標(biāo)(坐標(biāo)用m表示);
(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C.

(1)求點A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)取點E(,0)和點F(0,),直線l經(jīng)過E、F兩點,點G是線段BD的中點.
①點G是否在直線l上,請說明理由;
②在拋物線上是否存在點M,使點M關(guān)于直線l的對稱點在x軸上?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知:如圖①,直線與x軸、y軸分別交于A、B兩點,兩動點D、E分別從A、B兩點同時出發(fā)向O點運動(運動到O點停止);對稱軸過點A且頂點為M的拋物線(a<0)始終經(jīng)過點E,過E作EG∥OA交拋物線于點G,交AB于點F,連結(jié)DE、DF、AG、BG.設(shè)D、E的運動速度分別是1個單位長度/秒和個單位長度/秒,運動時間為t秒.

(1)用含t代數(shù)式分別表示BF、EF、AF的長;
(2)當(dāng)t為何值時,四邊形ADEF是菱形?判斷此時△AFG與△AGB是否相似,并說明理由;
(3)當(dāng)△ADF是直角三角形,且拋物線的頂點M恰好在BG上時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),B(﹣1,3),C(﹣3,3)

(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對稱軸為直線l,該圖象上的點P(m,n)在第三象限,其關(guān)于直線l的對稱點為M,點M關(guān)于y軸的對稱點為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

同步練習(xí)冊答案