【題目】如圖1,四邊形ABCD中,AB∥CD,∠B=90°,AC=AD.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿折線B-A-D-C方向以1單位/秒的速度運(yùn)動(dòng),在整個(gè)運(yùn)動(dòng)過程中,△BCP的面積S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)圖象如圖2所示,則AD等于( 。
A. 10B. C. 8D.
【答案】B
【解析】
當(dāng)t=5時(shí),點(diǎn)P到達(dá)A處,根據(jù)圖象可知AB=5;當(dāng)s=40時(shí),點(diǎn)P到達(dá)點(diǎn)D處,根據(jù)三角形BCD的面積可求出BC的長(zhǎng),再利用勾股定理即可求解.
解:當(dāng)t=5時(shí),點(diǎn)P到達(dá)A處,根據(jù)圖象可知AB=5,
過點(diǎn)A作AE⊥CD交CD于點(diǎn)E,則四邊形ABCE為矩形,
∵AC=AD,
∴DE=CE=CD,
當(dāng)s=40時(shí),點(diǎn)P到達(dá)點(diǎn)D處,
則S=CDBC=(2AB)BC=5×BC=40,
∴BC=8,
∴AD=AC=.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABC1D1的邊長(zhǎng)為1,延長(zhǎng)C1D1到A1,以A1C1為邊向右作正方形A1C1C2D2,延長(zhǎng)C2D2到A2,以A2C2為邊向右作正方形A2C2C3D3(如圖所示),以此類推…,若A1C1=2,且點(diǎn)A,D2, D3,…,D10都在同一直線上,則正方形A9C9C10D10的邊長(zhǎng)是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)證明過程,在括號(hào)內(nèi)填寫相應(yīng)理由,如圖,已知B、E分別是AC、DF上的點(diǎn),∠1=∠2,∠C=∠D,
求證:∠A=∠F.
證明:因?yàn)椤?/span>1=∠2(已知)
所以BD∥CE( )所以∠C=∠ABD( )因?yàn)椤?/span>C=∠D( )
所以∠D=∠ABD( )
所以DF∥AC( )所以∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E,F(xiàn)分別是邊AD,BC的中點(diǎn),AC分別交BE,DF于點(diǎn)M,N,給出下列結(jié)論:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC,其中正確的結(jié)論是__ __.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A、B分別在x軸和y軸上,△OBA是等腰直角三角形且AB=,線段PQ=1,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若P運(yùn)動(dòng)的路程為m,△OPA的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O.M為AD中點(diǎn),連接CM交BD于點(diǎn)N,且ON=1.
(1)求BD的長(zhǎng);
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,CE平分∠DCB交AB于點(diǎn)E.
(1)求證:∠AEC=∠ACE;
(2)若∠AEC=2∠B,AD=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB與⊙O相切于點(diǎn)C,連接OA,OB,OB交⊙O于點(diǎn)D.已知OA=OB=6 cm,AB=6cm.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn),給出如下定義:若存在點(diǎn)(為正數(shù)),稱點(diǎn)為點(diǎn)的等距點(diǎn).例如:如圖,對(duì)于點(diǎn),存在點(diǎn),點(diǎn),則點(diǎn)分別為點(diǎn)的等距點(diǎn).
(1)若點(diǎn)的坐標(biāo)是,寫出當(dāng)時(shí),點(diǎn)在第一象限的等距點(diǎn)坐標(biāo);
(2)若點(diǎn)的等距點(diǎn)的坐標(biāo)是,求當(dāng)點(diǎn)的橫、縱坐標(biāo)相同時(shí)的坐標(biāo);
(3)是否存在適當(dāng)?shù)?/span>值,當(dāng)將某個(gè)點(diǎn)的所有等距點(diǎn)用線段依次連接起來(lái)所得到的圖形周長(zhǎng)不大于,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com