【題目】如圖,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等嗎?請(qǐng)說(shuō)明理由.

請(qǐng)完成填空并補(bǔ)充完整.

解:因?yàn)椤?/span>1+∠2=180°(已知)

又因?yàn)椤?/span>2+∠   =180°(鄰補(bǔ)角的意義)

所以∠1=∠      

【答案】DFE,DFE,等量代換;補(bǔ)全過(guò)程見(jiàn)解析.

【解析】

根據(jù)平行線的判定方法和平行線的性質(zhì)填空,然后補(bǔ)全求解過(guò)程即可.

因?yàn)椤?/span>1+∠2=180°(已知)

又因?yàn)椤?/span>2+∠DFE=180°(鄰補(bǔ)角的意義)

所以∠1=∠DFE等量代換),

所以ABEF(內(nèi)錯(cuò)角相等,兩直線平行),

所以∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等)

因?yàn)椤?/span>3=∠B(已知)

所以∠B=∠ADE(等量代換),

DEBC同位角相等兩直線平行)

∴∠AED=∠C兩直線平行,同位角相等),

故答案為DFEDFE,等量代換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)平面上有四個(gè)點(diǎn)A,B,C,D,按照以下要求作圖:

作直線AD;

作射線CB交直線AD于點(diǎn)E

連接AC,BD交于點(diǎn)F;

(2)圖中共有 條線段;

(3)若圖中FAC的一個(gè)三等分點(diǎn),AFFC,已知線段AC上所有線段之和為18,求AF長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將紙片ABC沿AD折疊,使點(diǎn)C剛好落在AB邊上的E處,展開(kāi)如圖1.

[操作觀察]

(1)如圖2,作DFAC,垂足為F,且DF=3,AC=6,SABC=21,則AB=   ;

[理解應(yīng)用]

(2)①如圖3,設(shè)GAC上一點(diǎn)(與A、C)不重合,PAD上一個(gè)動(dòng)點(diǎn),連接PG、PC.試說(shuō)明:PG+PCEG大小關(guān)系;

②連接EC,若∠BAC=60°,GAC中點(diǎn),且AC=6,求EC長(zhǎng)

[拓展延伸]

(3)請(qǐng)根據(jù)前面的解題經(jīng)驗(yàn),解決下面問(wèn)題:

如圖4,在平面直角坐標(biāo)系中有A(1,4),B(3,﹣2),點(diǎn)Px軸上的動(dòng)點(diǎn),連接AP、BP,當(dāng)APBP的值最大時(shí),請(qǐng)?jiān)趫D中標(biāo)出P點(diǎn)的位置,并直接寫(xiě)出此時(shí)P點(diǎn)的坐標(biāo)為   ,APBP的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩塊直角三角尺的頂點(diǎn)疊放在一起.

(1)若∠DCE=35°,求∠ACB的度數(shù);

(2)若∠ACB=140°,求∠DCE的度數(shù);

(3)猜想∠ACB與∠DCE的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過(guò)O,D,C三點(diǎn).

(1)求AD的長(zhǎng)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P,Q,C為頂點(diǎn)的三角形與ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1,在方格紙中將三角形ABC經(jīng)過(guò)一次平移后得到三角形A'B' C,圖中標(biāo)出了點(diǎn)C的對(duì)應(yīng)點(diǎn)C'.

(1)請(qǐng)畫(huà)出平移后的三角形A'B'C′;

(2)連接AA′,CC′,則這兩條線段之間的關(guān)系是   ;

(3)三角形A'B'C'的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了紀(jì)念中國(guó)共產(chǎn)主義青年團(tuán)成立90周年,某校初三(1)、(2)班團(tuán)支部組織了一次聯(lián)歡會(huì),小樂(lè)為活動(dòng)設(shè)計(jì)了一個(gè)游戲:把兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)各等分成三個(gè)扇形,分別標(biāo)上1,2,3和4,5,6,每班級(jí)各派一名選手參加,每人同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)各一次(指針落在等分線上重轉(zhuǎn)),轉(zhuǎn)盤(pán)停止后,指針指向的數(shù)字之和為偶數(shù)時(shí)(1)班獲勝,數(shù)字之和為奇數(shù)時(shí)(2)班獲勝,小樂(lè)設(shè)計(jì)的游戲規(guī)則公平嗎?請(qǐng)用樹(shù)狀圖或列表分析說(shuō)明,若認(rèn)為不公平,請(qǐng)修改規(guī)則使游戲變得公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣ x+3與坐標(biāo)軸交于A,B兩點(diǎn),設(shè)P,Q分別為AB邊,OB邊上的動(dòng)點(diǎn),它們同時(shí)分別從點(diǎn)A,點(diǎn)O以每秒1個(gè)單位速度向終點(diǎn)B勻速移動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)請(qǐng)寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)試求△OPQ的面積S與移動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,當(dāng)t為何值時(shí),S有最大值?并求出S的最大值;
(3)試證明無(wú)論t為何值,△OPQ都不會(huì)是等邊三角形;
(4)將△OPQ沿直線PQ折疊,得到△O′PQ,問(wèn):△OPQ和O′PQ能否拼成一個(gè)三角形?若能,求出點(diǎn)O′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三條線段長(zhǎng)分別為10,14,20,以其中兩條為對(duì)角線,剩余一條為邊,可以畫(huà)出________個(gè)平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案