【題目】據(jù)《北京晚報》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬人次之后,每年接待量持續(xù)增長,到2018年突破1700萬人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會上再次掀起故宮熱.于是故宮文創(chuàng)營銷人員為開發(fā)針對不同年齡群體的文創(chuàng)產(chǎn)品,隨機調(diào)查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計圖表.
2018年參觀故宮觀眾年齡頻數(shù)分布表
年齡x/歲 | 頻數(shù)/人數(shù) | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計 | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補全頻數(shù)分布直方圖;
(3)從數(shù)據(jù)上看,年輕觀眾(20≤x<40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達(dá)到2000萬人次,那么其中年輕觀眾預(yù)計約有 萬人次.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AD是⊙O的直徑,AD=12,點BC在⊙O上,AB、DC的延長線交于點E,且CB=CE,∠BCE=70°,則以下判斷中不正確的是( )
A.∠ADE=∠EB.劣弧AB的長為π
C.點C為弧BD的中點D.BD平分∠ADE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校擬派一名跳高運動員參加校際比賽,對甲、乙兩名同學(xué)進(jìn)行了8次跳高選拔比賽,他們的原始成績(單位:cm)如下表:
學(xué)生/成績/次數(shù) | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 |
甲 | 169 | 165 | 168 | 169 | 172 | 173 | 169 | 167 |
乙 | 161 | 174 | 172 | 162 | 163 | 172 | 172 | 176 |
兩名同學(xué)的8次跳高成績數(shù)據(jù)分析如下表:
學(xué)生/成績/名稱 | 平均數(shù)(單位:cm) | 中位數(shù)(單位:cm) | 眾數(shù)(單位:cm) | 方差(單位:cm2) |
甲 | a | b | c | 5.75 |
乙 | 169 | 172 | 172 | 31.25 |
根據(jù)圖表信息回答下列問題:
(1)a= ,b= ,c= ;
(2)這兩名同學(xué)中, 的成績更為穩(wěn)定;(填甲或乙)
(3)若預(yù)測跳高165就可能獲得冠軍,該校為了獲取跳高比賽冠軍,你認(rèn)為應(yīng)該選擇 同學(xué)參賽,理由是: ;
(4)若預(yù)測跳高170方可奪得冠軍,該校為了獲取跳高比賽冠軍,你認(rèn)為應(yīng)該選擇 同學(xué)參賽,班由是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東67°方向,距離B地520km,C地位于A地南偏東30°方向,若打通穿山隧道,建成兩地直達(dá)高鐵,求建成高鐵后從B地前往C地的路程.(,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的項點為,交軸于、兩點(點在點左側(cè)),且.
(1)求拋物線的函數(shù)解析式;
(2)過點的直線交拋物線于點,交軸于點,若的面積被軸分為1: 4兩個部分,求直線的解析式;
(3)在(2)的情況下,將拋物線繞點逆時針旋轉(zhuǎn)180°得到拋物線,點為拋物線上一點,當(dāng)點的橫坐標(biāo)為何值時,為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點都在格點上,P1,P2,P3,P4,P5是△DEF邊上的5個格點,請按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個三角形,使它的三個頂點為P1,P2,P3,P4,P5中的3個格點并且與△ABC相似(要求:不寫作法與證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當(dāng)點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當(dāng)點D在邊BC的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).
(1)求點A與點B的坐標(biāo);
(2)若a=,點M是拋物線上一動點,若滿足∠MAO不大于45°,求點M的橫坐標(biāo)m的取值范圍.
(3)經(jīng)過點B的直線l:y=kx+b與y軸正半軸交于點C.與拋物線的另一個交點為點D,且CD=4BC.若點P在拋物線對稱軸上,點Q在拋物線上,以點B,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,點B在雙曲線(x<0)上,點D在雙曲線(x>0)上,點D的坐標(biāo)是 (3,3)
(1)求k的值;
(2)求點A和點C的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com